Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 210: 108618, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631157

RESUMO

The Acacia koa S-adenosylmethionine (SAM) synthetase was identified from transcriptome data and cloned into the T7-expression vector pEt14b. Assays indicate a thermoalkaliphic enzyme which tolerates conditions up to pH 10.5, 55 °C and 3 M KCl. In vitro examples of plant SAM-synthetase activity are scarce, however this study provides supporting evidence that these extremophilic properties may actually be typical for this plant enzyme. Enzyme kinetic constants (Km = 1.44 mM, Kcat = 1.29 s-1, Vmax 170 µM. min-1) are comparable to nonplant SAM-synthetases except that substrate inhibition was not apparent at 10 mM ATP/L-methionine. Methods were explored in this study to reduce feedback inhibition, which is known to limit SAM-synthetase activity in vitro. Four single-point mutation variants of the Acacia koa SAM-synthetase were produced, each with varying degrees of reduced reaction rate, greater sensitivity to product inhibition and loss of thermophilic properties. Although an enhanced mutant was not produced, this study describes the first mutagenesis of a plant SAM-synthetase. Overcoming feedback inhibition was accomplished by the addition of organic solvent to enzyme assays. Acetonitrile, methanol or dimethylformamide, when included as 25% of the assay volume, improved total SAM production by 30-65%.


Assuntos
Acacia , Metionina Adenosiltransferase , Acacia/genética , Acacia/metabolismo , Acacia/enzimologia , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Cinética , S-Adenosilmetionina/metabolismo , Concentração de Íons de Hidrogênio
2.
Front Plant Sci ; 13: 885366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783950

RESUMO

Leucaena leucocephala subsp. glabrata (giant leucaena) is a tree legume, whose foliage is used as a fodder for animals because of its high protein content. In spite of being a highly nutritious fodder, giant leucaena foliage has two undesirable secondary metabolites, mimosine and tannin. The amounts of mimosine and tannin in giant leucaena foliage are known to vary under different environmental conditions. Giant leucaena was grown under different salinity, pH and nitrogen availability conditions. It produced the highest amounts of mimosine at pH 6.0-7.0, whereas, variation in soil pH did not affect tannin concentrations. Salinity stress had negative effects on both mimosine and tannin concentrations, while nitrogen abundance promoted both mimosine and tannin production. Seven genes for mimosine and tannin metabolism were isolated from a transcriptome library of giant leucaena. These were mimosine synthase, mimosinase, chalcone synthase, flavanone 3ß-hydroxylase, dihydroflavonol reductase, leucoanthocyanidin reductase, and anthocyanidin reductase. The highest level of mimosine synthase activity was observed in the absence of salt in the soils. Mimosine synthase activities had strong positive correlation with mimosine concentrations in the foliage (R2 = 0.78) whereas mimosinase expression did not appear to have a direct relationship with salt concentrations. The expression of mimosine synthase was significantly higher in the leucaena foliage under nitrogen abundant condition than in nitrogen deficiency conditions, while mimosinase expression was significantly higher under nitrogen deficiency condition than in nitrogen abundance conditions. Mimosine concentrations in the foliage were positively correlated with the expression levels of mimosine synthase but not mimosinase. Similarly, the concentrations of tannin were positively correlated with expression levels of dihydroflavonol reductase, leucoanthocyanidin reductase, and anthocyanidin reductase. Understanding of the environmental conditions that promote or inhibit transcription of the genes for mimosine and tannin biosynthesis should help to design environmental conditions that inhibit transcription of these genes, resulting in reduced levels of these compounds in the leucaena foliage.

3.
Methods Mol Biol ; 2469: 231-237, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35508843

RESUMO

Mimosine is a nonprotein amino acid biosynthesized from OAS (O-acetylserine) and 3H4P (3-hydroxy-4-pyridone or its tautoisomer 3,4-dihydroxypyridine). This amino acid constitutively occurs in all parts of Leucaena leucocephala (Lam.) de Wit plants and is found at higher concentrations in seeds and leaves. This metabolite has several useful activities, such as antioxidant, allelochemical, insecticidal, antimicrobial, metal chelating, and antitumor. Mimosine is well studied in biomedical research due its ability to inhibit cells in the late G1 phase and to induce cell apoptosis. Two simple methods of mimosine extraction from leucaena leaves, pulverized and whole maceration, are described herein in detail.


Assuntos
Fabaceae , Mimosina , Aminoácidos/metabolismo , Fabaceae/metabolismo , Mimosina/química , Mimosina/metabolismo , Mimosina/farmacologia , Folhas de Planta/metabolismo , Sementes/metabolismo
4.
Plant Physiol Biochem ; 181: 42-49, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35429803

RESUMO

The cDNA encoding S-adenosylmethionine (SAM) synthetase was isolated from giant leucaena (Leucaena leucocephala subsp. glabrata) root tissue mRNA. Transcriptome data and 5'-RLM-RACE were used to obtain the transcript sequence and clone into the T7-expression vector pEt14b. N-terminal Histidine-tagged recombinant protein was expressed highly in Escherichia coli, purified and characterized by activity assays. A straightforward method using isocratic reverse-phase HPLC analysis (mobile phase: 0.02M o-phosphoric acid) of enzyme assays determined optimal enzyme activity at pH 10.0, 55 °C and 200 mM KCl. In addition to thermophilic activity, giant leucaena SAM-synthetase remains highly active in solutions containing up to 4 M KCl and accepts Na+ to some extent as a substitute for K+, a known required cofactor for SAM-synthetases. The enzyme followed Michaelis-Menten kinetics (Km = 1.82 mM, Kcat = 1.17 s-1, Vmax 243.9 µM. min-1) and was not inhibited by spermidine, spermine or nicotianamine. Giant leucaena SAM-synthetase is a highly tolerant enzyme to extreme conditions, suggesting further studies on plant SAM-synthetases.


Assuntos
Fabaceae , Metionina Adenosiltransferase , Escherichia coli/genética , Escherichia coli/metabolismo , Fabaceae/metabolismo , Ligases/metabolismo , Metionina Adenosiltransferase/genética , Proteínas Recombinantes/metabolismo
5.
Amino Acids ; 53(6): 801-812, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33950299

RESUMO

Plants catalyze the biosynthesis of a large number of non-protein amino acids, which are usually toxic for other organisms. In this review, the chemistry and metabolism of N-heterocyclic non-protein amino acids from plants are described. These N-heterocyclic non-protein amino acids are composed of ß-substituted alanines and include mimosine, ß-pyrazol-1-yl-L-alanine, willardiine, isowillardiine, and lathyrine. These ß-substituted alanines consisted of an N-heterocyclic moiety and an alanyl side chain. This review explains how these individual moieties are derived from their precursors and how they are used as the substrate for biosynthesizing the respective N-heterocyclic non-protein amino acids. In addition, known catabolism and possible role of these non-protein amino acids in the actual host is explained.


Assuntos
Alanina/análogos & derivados , Diamino Aminoácidos/biossíntese , Plantas/metabolismo , Uracila/biossíntese , Alanina/biossíntese
6.
Plant Physiol Biochem ; 163: 95-107, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33826996

RESUMO

Metal uptake, transport and storage in plants depend on specialized ligands with closely related functions. Individual studies differing by species, nutrient availability, tissue type, etc. are not comprehensive enough to understand plant metal homeostasis in its entirety. A thorough review is required that distinguishes the role of ligands directly involved in chelation from the myriad of plant responses to general stress. Distinguishing between the functions of metal chelating compounds is the primary focus of this review; reactive oxygen species mediation and other aspects of metal homeostasis are also discussed. High molecular weight ligands (polysaccharides, phytochelatin, metallothionein), low molecular weight ligands (nicotianamine, histidine, secondary metabolites) and select studies which demonstrate the complex nature of plant metal homeostasis are explored.


Assuntos
Metais , Plantas , Transporte Biológico , Homeostase , Fitoquelatinas
7.
Plant Mol Biol ; 102(4-5): 431-445, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31907707

RESUMO

KEY MESSAGE: Iron deficiency conditions as well as iron supplied as a Fe(III)-mimosine complex induced a number of strategy I and strategy II genes for iron uptake in leucaena. Leucaena leucocephala (leucaena) is a tree-legume that can grow in alkaline soils, where metal-cofactors like Fe(III) are sparingly available. Mimosine, a known chelator of Fe(III), may facilitate Fe(III) uptake in leucaena by serving as a phytosiderophore. To test if mimosine can serve as a phytosiderophore, three sets of experiments were carried out. First, the binding properties and solubility of metal-mimosine complexes were assessed through spectrophotometry. Second, to study mimosine uptake in plants, pole bean, common bean, and tomato plants were supplied with mimosine alone and metal-mimosine complexes. Third, the expression of strategy I (S1) and strategy II (S2) genes for iron uptake from the soil was studied in leucaena plants exposed to different Fe(III) complexes. The results of this study show that (i) mimosine has high binding affinity for metallic cations at alkaline pH, Fe(III)-mimosine complexes are water soluble at alkaline pH, and that mimosine can bind soil iron under alkaline pH; (ii) pole bean, common bean, and tomato plants can uptake mimosine and transport it throughout the plant; and (iii) a number of S1 and S2 genes were upregulated in leucaena under iron-deficiency condition or when Fe(III) was supplied as a Fe(III)-mimosine complex. These findings suggest that leucaena may utilize both S1 and S2 strategies for iron uptake; and mimosine may play an important role in both strategies.


Assuntos
Fabaceae/efeitos dos fármacos , Fabaceae/metabolismo , Mimosina/farmacocinética , Transporte Biológico , Soluções Tampão , Cátions , Compostos Férricos/metabolismo , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ferro/metabolismo , Metais/metabolismo , Nitrogênio , Phaseolus/efeitos dos fármacos , Phaseolus/metabolismo , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Ligação Proteica , Sideróforos/metabolismo , Solo , Solanum/efeitos dos fármacos , Solanum/metabolismo , Solubilidade
8.
Plant Physiol Biochem ; 135: 432-440, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30482504

RESUMO

Mimosine is a non-protein amino acid of Fabaceae, such as Leucaena spp. and Mimosa spp. Several relevant biological activities have been described for this molecule, including cell cycle blocker, anticancer, antifungal, antimicrobial, herbivore deterrent and allelopathic activities, raising increased economic interest in its production. In addition, information on mimosine dynamics in planta remains limited. In order to address this topic and propose strategies to increase mimosine production aiming at economic uses, the effects of several stress-related elicitors of secondary metabolism and UV acute exposure were examined on mimosine accumulation in growth room-cultivated seedlings of Leucaena leucocephala spp. glabrata. Mimosine concentration was not significantly affected by 10 ppm salicylic acid (SA) treatment, but increased in roots and shoots of seedlings treated with 84 ppm jasmonic acid (JA) and 10 ppm Ethephon (an ethylene-releasing compound), and in shoots treated with UV-C radiation. Quantification of mimosine amidohydrolase (mimosinase) gene expression showed that ethephon yielded variable effect over time, whereas JA and UV-C did not show significant impact. Considering the strong induction of mimosine accumulation by acute UV-C exposure, additional in situ ROS localization, as well as in vitro antioxidant assays were performed, suggesting that, akin to several secondary metabolites, mimosine may be involved in general oxidative stress modulation, acting as a hydrogen peroxide and superoxide anion quencher.


Assuntos
Fabaceae/metabolismo , Mimosina/metabolismo , Antioxidantes/metabolismo , Ciclopentanos/farmacologia , Fabaceae/efeitos dos fármacos , Fabaceae/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Peróxido de Hidrogênio/metabolismo , Compostos Organofosforados/farmacologia , Estresse Oxidativo , Oxilipinas/farmacologia , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Ácido Salicílico/farmacologia , Plântula/metabolismo , Estresse Fisiológico , Superóxidos/metabolismo , Raios Ultravioleta
9.
Methods Mol Biol ; 1405: 59-77, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26843166

RESUMO

Heterologous expression of eukaryotic genes in bacterial system is an important method in synthetic biology to characterize proteins. It is a widely used method, which can be sometimes quite challenging, as a number of factors that act along the path of expression of a transgene to mRNA, and mRNA to protein, can potentially affect the expression of a transgene in a heterologous system. Here, we describe a method for successful cloning and expression of mimosinase-encoding gene from Leucaena leucocephala (leucaena) in E. coli as the heterologous host. Mimosinase is an important enzyme especially in the context of metabolic engineering of plant secondary metabolite as it catalyzes the degradation of mimosine, which is a toxic secondary metabolite found in all Leucaena and Mimosa species. We also describe the methods used for characterization of the recombinant mimosinase.


Assuntos
Enzimas/genética , Fabaceae/genética , Expressão Gênica , Proteínas de Plantas/genética , Proteínas Recombinantes , Clonagem Molecular , Ativação Enzimática , Enzimas/isolamento & purificação , Enzimas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fabaceae/metabolismo , Biblioteca Gênica , Mimosina/metabolismo , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA
10.
Insect Sci ; 23(4): 591-602, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25728903

RESUMO

Banana bunchy top virus (BBTV) (Nanoviridae: Babuvirus) is transmitted by aphids of the genus Pentalonia in a circulative manner. The cellular mechanisms by which BBTV translocates from the anterior midgut to the salivary gland epithelial tissues are not understood. Here, we used multiple fluorescent markers to study the distribution and the cellular localization of early and late endosomes, macropinosomes, lysosomes, microtubules, actin filaments, and lipid raft subdomains in the gut and principal salivary glands of Pentalonia nigronervosa. We applied colabeling assays, to colocalize BBTV viral particles with these cellular compartments and structures. Our results suggest that multiple potential cellular processes, including clathrin- and caveolae-mediated endocytosis and lipid rafts, may not be involved in BBTV internalization.


Assuntos
Afídeos/virologia , Babuvirus , Insetos Vetores/virologia , Animais , Afídeos/citologia , Trato Gastrointestinal/citologia , Trato Gastrointestinal/virologia , Musa/virologia , Doenças das Plantas/virologia , Glândulas Salivares/citologia , Glândulas Salivares/virologia
11.
Appl Biochem Biotechnol ; 173(5): 1157-68, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24777760

RESUMO

In plants, the final step of cysteine formation is catalyzed by O-acetylserine (thiol) lyase (OAS-TL). The purpose of this study was to isolate and characterize an OAS-TL from the tree legume Leucaena leucocephala (leucaena). Leucaena contains a toxic, nonprotein amino acid, mimosine, which is also formed by an OAS-TL, and characterization of this enzyme is essential for developing a mimosine-free leucaena for its use as a protein-rich fodder. The cDNA for a cytosolic leucaena OAS-TL isoform was obtained through interspecies suppression subtractive hybridization. A 40-kDa recombinant protein was purified from Escherichia coli and used in enzyme activity assays where it was found to synthesize only cysteine. The enzyme followed Michaelis-Menten kinetics, and the Km was calculated to be 1,850±414 µM sulfide and the Vmax was 200.6±19.92 µM cysteine min(-1). The N-terminal affinity His-tag was cleaved from the recombinant OAS-TL to eliminate its possible interference in binding with the substrate, 3-hydroxy-4-pyridone, for mimosine formation. The His-tag-cleaved OAS-TL was again observed to catalyze the formation of cysteine but not mimosine. Thus, the cytosolic OAS-TL from leucaena used in this study is specific for only cysteine synthesis and is different from previously reported OAS-TLs that also function as ß-substituted alanine synthases.


Assuntos
Cisteína Sintase/metabolismo , Cisteína/biossíntese , Fabaceae/enzimologia , Mimosina/metabolismo , Cisteína Sintase/genética , Cisteína Sintase/isolamento & purificação , Escherichia coli/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
12.
Plant Physiol ; 164(2): 922-34, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24351687

RESUMO

The tree legume Leucaena leucocephala contains a large amount of a toxic nonprotein aromatic amino acid, mimosine, and also an enzyme, mimosinase, for mimosine degradation. In this study, we isolated a 1,520-bp complementary DNA (cDNA) for mimosinase from L. leucocephala and characterized the encoded enzyme for mimosine-degrading activity. The deduced amino acid sequence of the coding region of the cDNA was predicted to have a chloroplast transit peptide. The nucleotide sequence, excluding the sequence for the chloroplast transit peptide, was codon optimized and expressed in Escherichia coli. The purified recombinant enzyme was used in mimosine degradation assays, and the chromatogram of the major product was found to be identical to that of 3-hydroxy-4-pyridone (3H4P), which was further verified by electrospray ionization-tandem mass spectrometry. The enzyme activity requires pyridoxal 5'-phosphate but not α-keto acid; therefore, the enzyme is not an aminotransferase. In addition to 3H4P, we also identified pyruvate and ammonia as other degradation products. The dependence of the enzyme on pyridoxal 5'-phosphate and the production of 3H4P with the release of ammonia indicate that it is a carbon-nitrogen lyase. It was found to be highly efficient and specific in catalyzing mimosine degradation, with apparent Km and Vmax values of 1.16×10(-4) m and 5.05×10(-5) mol s(-1) mg(-1), respectively. The presence of other aromatic amino acids, including l-tyrosine, l-phenylalanine, and l-tryptophan, in the reaction did not show any competitive inhibition. The isolation of the mimosinase cDNA and the biochemical characterization of the recombinant enzyme will be useful in developing transgenic L. leucocephala with reduced mimosine content in the future.


Assuntos
Biocatálise , Carbono-Nitrogênio Liases/metabolismo , Fabaceae/enzimologia , Mimosina/metabolismo , Arabidopsis/enzimologia , Carbono-Nitrogênio Liases/isolamento & purificação , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Códon/genética , Sequência Conservada , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Escherichia coli/metabolismo , Resposta ao Choque Térmico , Cinética , Liases/metabolismo , Espectrometria de Massas , Mimosina/química , Modelos Biológicos , Fases de Leitura Aberta/genética , Filogenia , Piridonas/química , Piridonas/metabolismo , Proteínas Recombinantes/metabolismo , Padrões de Referência , Especificidade por Substrato , Temperatura
13.
Virus Res ; 177(1): 98-102, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23816604

RESUMO

Circulative plant viruses such as luteovirids and geminiviruses have been shown to bind to GroEL proteins produced by endosymbiotic bacteria harboured within hemipteran vectors. These interactions seem to prevent the degradation of the viral particles in the aphid's haemocoel. Similarly to luteovirids and geminiviruses, Banana bunchy top virus (BBTV), a member of the Nanoviridae family, is transmitted in a persistent, circulative manner and can be detected in the haemolymph of the aphid vector, Pentalonia nigronervosa. To date, it is not known if BBTV can interact with GroEL. In this study, we localised and inferred the phylogeny of a Buchnera aphidicola endosymbiont inhabiting P. nigronervosa. Furthermore, we predicted the 3D structure of Buchnera GroEL and detected the protein in the haemolymph of P. nigronervosa. Interactions were tested using 3 different assays: immunocapture PCR, dot blot, and far-western blot assays; however, none of them showed evidence of a BBTV-GroEL interaction. We concluded that it was unlikely that BBTV interacted with Buchnera GroEL either in vitro or in vivo and we discuss possible alternatives by which BBTV viral particles are able to avoid the process of degradation in the aphid haemocoel.


Assuntos
Afídeos/microbiologia , Proteínas de Bactérias/metabolismo , Buchnera/metabolismo , Chaperonina 60/metabolismo , Musa/virologia , Nanoviridae/metabolismo , Doenças das Plantas/virologia , Animais , Afídeos/virologia , Proteínas de Bactérias/genética , Buchnera/classificação , Buchnera/genética , Buchnera/isolamento & purificação , Chaperonina 60/genética , Insetos Vetores/microbiologia , Insetos Vetores/virologia , Nanoviridae/genética
14.
Amino Acids ; 44(6): 1537-47, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23462928

RESUMO

Rhizobium sp. strain TAL1145 catabolizes mimosine, which is a toxic non-protein amino acid present in Leucaena leucocephala (leucaena). The objective of this investigation was to study the biochemical and catalytic properties of the enzyme encoded by midD, one of the TAL1145 genes involved in mimosine degradation. The midD-encoded enzyme, MidD, was expressed in Escherichia coli, purified and used for biochemical and catalytic studies using mimosine as the substrate. The reaction products in the enzyme assay were analyzed by HPLC and mass spectrometry. MidD has a molecular mass of ~45 kDa and its catalytic activity was found to be optimal at 37 °C and pH 8.5. The major product formed in the reaction had the same retention time as that of synthetic 3-hydroxy-4-pyridone (3H4P). It was confirmed to be 3H4P by MS/MS analysis of the HPLC-purified product. The K m, V max and K cat of MidD were 1.27 × 10(-4) mol, 4.96 × 10(-5) mol s(-1) mg(-1), and 2,256.05 s(-1), respectively. Although MidD has sequence similarities with aminotransferases, it is not an aminotransferase because it does not require a keto acid as the co-substrate in the degradation reaction. It is a pyridoxal-5'-phosphate (PLP)-dependent enzyme and the addition of 50 µM hydroxylamine completely inhibited the reaction. However, the supplementation of the reaction with 0.1 µM PLP restored the catalytic activity of MidD in the reaction containing 50 µM hydroxylamine. The catalytic activity of MidD was found to be specific to mimosine, and the presence of its structural analogs including L-tyrosine, L-tryptophan and L-phenylalanine did not show any competitive inhibition. In addition to 3H4P, we also identified pyruvate and ammonia as other degradation products in equimolar quantities of the substrate used. The degradation of mimosine into a ring compound, 3H4P with the release of ammonia indicates that MidD of Rhizobium sp. strain TAL1145 is a C-N lyase.


Assuntos
Amônia/metabolismo , Carbono-Nitrogênio Liases/genética , Carbono-Nitrogênio Liases/metabolismo , Mimosina/metabolismo , Piridonas/metabolismo , Ácido Pirúvico/metabolismo , Rhizobium/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Carbono-Nitrogênio Liases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Escherichia coli/genética , Hidroxilamina/metabolismo , Hidroxilamina/farmacologia , Dados de Sequência Molecular , Peso Molecular , Fosfato de Piridoxal/metabolismo , Rhizobium/genética , Especificidade por Substrato , Espectrometria de Massas em Tandem
15.
Plant Physiol Biochem ; 48(4): 273-8, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20138776

RESUMO

The use of the tree-legume Leucaena leucocephala (leucaena), which contains high levels of proteins in its foliage, is limited due to the presence of the toxic free amino acid mimosine. The goal of this research was to develop transgenic leucaena with reduced mimosine content. Two genes, pydA and pydB, encoding a meta-cleavage dioxygenase (EC 1.13.11.2) and a pyruvate hydrolase (EC 3.7.1.6), respectively, from the mimosine-degrading leucaena symbiont Rhizobium sp. strain TAL1145, were used to transform leucaena. These bacterial genes were sequence-optimized for expression in leucaena and cloned into the plant binary vector pCAMBIA3201 for Agrobacterium tumefaciens-mediated transformation. Using immature zygotic embryos as the start explant material, six pydA and three pydB transgenic lines were developed. The presence and expression of the bacterial genes in the transgenic lines were verified by PCR, reverse transcriptase PCR, and Southern analyses. HPLC analyses of the transgenic plants determined that the mimosine contents of the pydA-expressing lines were reduced up to 22.5% in comparison to the wild-type. No significant reduction in mimosine content was observed in the pydB-expressing lines. This is the first example of using a gene from a bacterial symbiont to reduce the toxicity of a tree-legume.


Assuntos
Dioxigenases/genética , Fabaceae/genética , Genes Bacterianos , Mimosina/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Rhizobium/genética , Agrobacterium tumefaciens , Southern Blotting , Cromatografia Líquida de Alta Pressão , Fabaceae/metabolismo , Vetores Genéticos , Hidrolases/genética , Mimosina/toxicidade , Plasmídeos , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transformação Genética
16.
Plant Cell Tissue Organ Cult ; 96(3): 325-333, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20041041

RESUMO

The tree-legume Leucaena leucocephala (leucaena) is used as a perennial fodder because of its fast-growing foliage, which is high in protein content. The use of leucaena as a fodder is however restricted due to the presence of the toxin mimosine. Improvements in the nutritional contents as well as other agronomic traits of leucaena can be accomplished through genetic transformation. The objective of this research was to develop a transformation protocol for leucaena using phosphinothricin resistance as the plant selectable marker. Explants obtained from immature zygotic embryos infected with the Agrobacterium tumefaciens strain C58C1 containing the binary plasmid pCAMBIA3201 produced four putative transformed leucaena plants. Transformation was con- firmed by PCR, RT-PCR, Southern blot, Western analyses, GUS-specific enzyme activity and herbicide leaf spraying assay. A transformation efficiency of 2% was established using this protocol.

17.
Genome ; 51(12): 1001-15, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19088813

RESUMO

The aim of this research was to develop and use microsatellite markers to characterize the high-value timber tree Acacia koa (koa), which is endemic to the Hawaiian Islands. Genomic DNA fragments of 300-1000 bp were cloned and sequenced following enrichment for microsatellite motifs by PCR using 7 oligonucleotide repeat primers in separate reactions. Among 96 sequences analyzed, 63 contained unique microsatellite motifs flanked by variable sequences. A dual PCR method involving a primer walking step was used to develop 15 primer pairs. Another 16 primer pairs were developed directly from the variable sequences on both sides of the microsatellite motifs. These 31 primer pairs were tested on 172 koa plants representing 11 populations collected from 4 of the major Hawaiian Islands. Nine of the primers that identified polymorphic microsatellite loci and 3 that detected unique alleles exclusively in some populations were used for genetic diversity studies of koa. Cluster analysis and multidimensional scaling of the allelic phenotype data revealed that koa from Kauai formed a distinct group separate from koa of the neighboring islands of Oahu, Maui, and Hawaii. The oldest of the four islands, Kauai, also had the most diverse populations of koa.


Assuntos
Acacia/genética , Especiação Genética , Repetições de Microssatélites , Frequência do Gene , Havaí , Modelos Biológicos , Filogenia , Reação em Cadeia da Polimerase/métodos , Polimorfismo Genético , População , Análise de Sequência de DNA , Árvores/genética
18.
Vaccine ; 26(34): 4396-402, 2008 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-18585419

RESUMO

The aim of this research was to identify subunit immunogens that can generate enhanced CD8 T cell and TH1 responses against Mycobacterium tuberculosis. A genomic comparison of the M. tuberculosis H(37)R(V) and M. bovis BCG identified 61 proteins that are unique to H(37)R(V). Further screening of these 61 proteins using in silico analyses mimicking proteasomal digestion, transporter-associated antigen processing and H-2 antigen presentation identified 13 proteins with high densities of predicted MHC class I epitopes. Two native proteins, Rv1986c and Rv3875, were selected on the basis of their secreted or transmembrane characteristics and relatively lower frequencies of predicted MHC class II epitopes. To further enhance the CD8 T cell and TH1 responses, a hybrid protein, H32, was constructed by combining the nucleotide sequences encoding the MHC class I antigen-rich segment of Rv1986c and the entire Rv3875 sequence. The two native proteins and the hybrid were used to immunize C57BL/6 and Balb/c mice, which was followed by pulmonary instillation with irradiated M. tuberculosis H(37)R(V). All three proteins elicited elevated IFN-gamma responses, with the hybrid showing significant increases over the native proteins in both mice. This strategy of immunogen selection might be used to improve the current subunit vaccines against M. tuberculosis as well as other intra-cellular pathogens.


Assuntos
Proteínas de Bactérias/imunologia , Citocinas/biossíntese , Pulmão/imunologia , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/imunologia , Animais , Proteínas de Bactérias/genética , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Células Th1/imunologia , Vacinas contra a Tuberculose/genética
19.
Arch Microbiol ; 190(4): 409-15, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18493742

RESUMO

The objective of this study was to determine the role of midK, which encodes a protein similar to pyruvate carboxylase, in mimosine degradation by Rhizobium sp. strain TAL1145. The midK gene is located downstream of midR in the cluster of genes for mimosine degradation in Rhizobium sp. strain TAL1145. The midK mutants of TAL1145 degraded mimosine slower than the wild-type. These mutants could utilize pyruvate as a source of carbon, indicating that there is another pyruvate carboxylase (pyc) gene in TAL1145. Two classes of clones were isolated from the library of TAL1145 by complementing a pyc mutant of Rhizobium etli, one class contained midK, while the other carried pyc. Both midK and pyc of TAL1145 complemented the midK mutant for mimosine degradation, and also the R. etli pyc mutant for pyruvate utilization. The midK-encoded pyruvate carboxylase was required for an efficient conversion of mimosine into 3-hydroxy-4-pyridone (HP).


Assuntos
Proteínas de Bactérias/metabolismo , Mimosina/metabolismo , Piruvato Carboxilase/metabolismo , Rhizobium/enzimologia , Proteínas de Bactérias/genética , Carbono/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Ordem dos Genes , Teste de Complementação Genética , Dados de Sequência Molecular , Família Multigênica , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Piridonas/metabolismo , Piruvato Carboxilase/genética , Ácido Pirúvico/metabolismo , Rhizobium/genética , Análise de Sequência de DNA
20.
Syst Appl Microbiol ; 31(2): 141-50, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18406559

RESUMO

The objective of this study was to determine the role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase of symbionts in nodulation and growth of Leucaena leucocephala. The acdS genes encoding ACC deaminase were cloned from Rhizobium sp. strain TAL1145 and Sinorhizobium sp. BL3 in multicopy plasmids, and transferred to TAL1145. The BL3-acdS gene greatly enhanced ACC deaminase activity in TAL1145 compared to the native acdS gene. The transconjugants of TAL1145 containing the native or BL3 acdS gene could grow in minimal media containing 1.5mM ACC, whereas BL3 could tolerate up to 3mM ACC. The TAL1145 acdS gene was inducible by mimosine and not by ACC, while the BL3 acdS gene was highly inducible by ACC and not by mimosine. The transconjugants of TAL1145 containing the native- and BL3-acdS genes formed nodules with greater number and sizes, and produced higher root mass on L. leucocephala than by TAL1145. This study shows that the introduction of multiple copies of the acdS gene increased ACC deaminase activities of TAL1145 and enhanced its symbiotic efficiency on L. leucocephala.


Assuntos
Carbono-Carbono Liases/metabolismo , Fabaceae/crescimento & desenvolvimento , Fabaceae/microbiologia , Rhizobium/enzimologia , Sinorhizobium/enzimologia , Biomassa , Carbono-Carbono Liases/genética , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Indução Enzimática , Dosagem de Genes , Ordem dos Genes , Mimosina/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Plasmídeos , Rhizobium/genética , Análise de Sequência de DNA , Sinorhizobium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...