Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34848534

RESUMO

Increasing habitat fragmentation leads to wild populations becoming small, isolated, and threatened by inbreeding depression. However, small populations may be able to purge recessive deleterious alleles as they become expressed in homozygotes, thus reducing inbreeding depression and increasing population viability. We used whole-genome sequences from 57 tigers to estimate individual inbreeding and mutation load in a small-isolated and two large-connected populations in India. As expected, the small-isolated population had substantially higher average genomic inbreeding (FROH = 0.57) than the large-connected (FROH = 0.35 and FROH = 0.46) populations. The small-isolated population had the lowest loss-of-function mutation load, likely due to purging of highly deleterious recessive mutations. The large populations had lower missense mutation loads than the small-isolated population, but were not identical, possibly due to different demographic histories. While the number of the loss-of-function alleles in the small-isolated population was lower, these alleles were at higher frequencies and homozygosity than in the large populations. Together, our data and analyses provide evidence of 1) high mutation load, 2) purging, and 3) the highest predicted inbreeding depression, despite purging, in the small-isolated population. Frequency distributions of damaging and neutral alleles uncover genomic evidence that purifying selection has removed part of the mutation load across Indian tiger populations. These results provide genomic evidence for purifying selection in both small and large populations, but also suggest that the remaining deleterious alleles may have inbreeding-associated fitness costs. We suggest that genetic rescue from sources selected based on genome-wide differentiation could offset any possible impacts of inbreeding depression.


Assuntos
Variação Genética , Genômica , Endogamia , Tigres/genética , Distribuição Animal , Animais , Conservação dos Recursos Naturais , Genoma , Índia
2.
Mol Biol Evol ; 38(6): 2366-2379, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33592092

RESUMO

Species conservation can be improved by knowledge of evolutionary and genetic history. Tigers are among the most charismatic of endangered species and garner significant conservation attention. However, their evolutionary history and genomic variation remain poorly known, especially for Indian tigers. With 70% of the world's wild tigers living in India, such knowledge is critical. We re-sequenced 65 individual tiger genomes representing most extant subspecies with a specific focus on tigers from India. As suggested by earlier studies, we found strong genetic differentiation between the putative tiger subspecies. Despite high total genomic diversity in India, individual tigers host longer runs of homozygosity, potentially suggesting recent inbreeding or founding events, possibly due to small and fragmented protected areas. We suggest the impacts of ongoing connectivity loss on inbreeding and persistence of Indian tigers be closely monitored. Surprisingly, demographic models suggest recent divergence (within the last 20,000 years) between subspecies and strong population bottlenecks. Amur tiger genomes revealed the strongest signals of selection related to metabolic adaptation to cold, whereas Sumatran tigers show evidence of weak selection for genes involved in body size regulation. We recommend detailed investigation of local adaptation in Amur and Sumatran tigers prior to initiating genetic rescue.


Assuntos
Evolução Biológica , Deriva Genética , Endogamia , Seleção Genética , Tigres/genética , Animais , Conservação dos Recursos Naturais , Variação Genética , Genoma , Índia , Filogeografia
3.
Sci Rep ; 7(1): 9614, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851952

RESUMO

Tigers have lost 93% of their historical range worldwide. India plays a vital role in the conservation of tigers since nearly 60% of all wild tigers are currently found here. However, as protected areas are small (<300 km2 on average), with only a few individuals in each, many of them may not be independently viable. It is thus important to identify and conserve genetically connected populations, as well as to maintain connectivity within them. We collected samples from wild tigers (Panthera tigris tigris) across India and used genome-wide SNPs to infer genetic connectivity. We genotyped 10,184 SNPs from 38 individuals across 17 protected areas and identified three genetically distinct clusters (corresponding to northwest, southern and central India). The northwest cluster was isolated with low variation and high relatedness. The geographically large central cluster included tigers from central, northeastern and northern India, and had the highest variation. Most genetic diversity (62%) was shared among clusters, while unique variation was highest in the central cluster (8.5%) and lowest in the northwestern one (2%). We did not detect signatures of differential selection or local adaptation. We highlight that the northwest population requires conservation attention to ensure persistence of these tigers.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Genética Populacional , Tigres/genética , Animais , Loci Gênicos , Variação Genética , Genômica/métodos , Geografia , Sequenciamento de Nucleotídeos em Larga Escala , Índia , Filogenia , Polimorfismo de Nucleotídeo Único , Seleção Genética , Tigres/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...