Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36979710

RESUMO

The thymus is widely recognized as an immunological niche where autoimmunity against the acetylcholine receptor (AChR) develops in myasthenia gravis (MG) patients, who mostly present thymic hyperplasia and thymoma. Thymoma-associated MG is frequently characterized by autoantibodies to the muscular ryanodine receptor 1 (RYR1) and titin (TTN), along with anti-AChR antibodies. By real-time PCR, we analyzed muscle-CHRNA1, RYR1, and TTN-and muscle-like-NEFM, RYR3 and HSP60-autoantigen gene expression in MG thymuses with hyperplasia and thymoma, normal thymuses and non-MG thymomas, to check for molecular changes potentially leading to an altered antigen presentation and autoreactivity. We found that CHRNA1 (AChR-α subunit) and AIRE (autoimmune regulator) genes were expressed at lower levels in hyperplastic and thymoma MG compared to the control thymuses, and that the RYR1 and TTN levels were decreased in MG versus the non-MG thymomas. Genes encoding autoantigens that share epitopes with AChR-α (NEFM and HSP60), RYR1 (neuronal RYR3), and TTN (NEFM) were up-regulated in thymomas versus hyperplastic and control thymuses, with distinct molecular patterns across the thymoma histotypes that could be relevant for autoimmunity development. Our findings support the idea that altered muscle autoantigen expression, related with hyperplastic and neoplastic changes, may favor autosensitization in the MG thymus, and that molecular mimicry involving tumor-related muscle-like proteins may be a mechanism that makes thymoma prone to developing MG.

2.
Biomedicines ; 10(6)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35740382

RESUMO

The complement system plays a key role in myasthenia gravis (MG). Anti-complement drugs are emerging as effective therapies to treat anti-acetylcholine receptor (AChR) antibody-positive MG patients, though their usage is still limited by the high costs. Here, we searched for plasma complement proteins as indicators of complement activation status in AChR-MG patients, and potential biomarkers for tailoring anti-complement therapy in MG. Plasma was collected from AChR-MG and MuSK-MG patients, and healthy controls. Multiplex immunoassays and ELISA were used to quantify a panel of complement components (C1Q, C2, C3, C4, C5, Factor B, Factor H, MBL, and properdin) and activation products (C4b, C3b, C5a, and C5b-9), of classical, alternative and lectin pathways. C2 and C5 levels were significantly reduced, and C3, C3b, and C5a increased, in plasma of AChR-MG, but not MuSK-MG, patients compared to controls. This protein profile was indicative of complement activation. We obtained sensitivity and specificity performance results suggesting plasma C2, C3, C3b, and C5 as biomarkers for AChR-MG. Our findings reveal a plasma complement "C2, C3, C5, C3b, and C5a" profile associated with AChR-MG to be further investigated as a biomarker of complement activation status in AChR-MG patients, opening new perspectives for tailoring of anti-complement therapies to improve the disease treatment.

3.
Front Immunol ; 11: 142, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210951

RESUMO

Toll-like receptor (TLR)-mediated innate immune responses are critically involved in the pathogenesis of myasthenia gravis (MG), an autoimmune disorder affecting neuromuscular junction mainly mediated by antiacetylcholine receptor antibodies. Considerable evidence indicate that uncontrolled TLR activation and chronic inflammation significantly contribute to hyperplastic changes and germinal center (GC) formation in the MG thymus, ultimately leading to autoantibody production and autoimmunity. miR-146a is a key modulator of innate immunity, whose dysregulation has been associated with autoimmune diseases. It acts as inhibitor of TLR pathways, mainly by targeting the nuclear factor kappa B (NF-κB) signaling transducers, interleukin 1 receptor associated kinase 1 (IRAK1) and tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6); miR-146a is also able to target c-REL, inducible T-cell costimulator (ICOS), and Fas cell surface death receptor (FAS), known to regulate B-cell function and GC response. Herein, we investigated the miR-146a contribution to the intrathymic MG pathogenesis. By real-time PCR, we found that miR-146a expression was significantly downregulated in hyperplastic MG compared to control thymuses; contrariwise, IRAK1, TRAF6, c-REL, and ICOS messenger RNA (mRNA) levels were upregulated and negatively correlated with miR-146a levels. Microdissection experiments revealed that miR-146a deficiency in hyperplastic MG thymuses was not due to GCs, but restricted to the GC-surrounding medulla, characterized by IRAK1 overexpression. We also showed higher c-REL and ICOS mRNA levels, and lower FAS mRNA levels, in GCs than in the remaining medulla, according to the contribution of these molecules in GC formation. By double immunofluorescence, an increased proportion of IRAK1-expressing dendritic cells and macrophages was found in hyperplastic MG compared to control thymuses, along with GC immunoreactivity for c-REL. Interestingly, in corticosteroid-treated MG patients intrathymic miR-146a and mRNA target levels were comparable to those of controls, suggesting that immunosuppressive therapy may restore the microRNA (miRNA) levels. Indeed, an effect of prednisone on miR-146a expression was demonstrated in vitro on peripheral blood cells. Serum miR-146a levels were lower in MG patients compared to controls, indicating dysregulation of the circulating miRNA. Our overall findings strongly suggest that defective miR-146a expression could contribute to persistent TLR activation, lack of inflammation resolution, and hyperplastic changes in MG thymuses, thus linking TLR-mediated innate immunity to B-cell-mediated autoimmunity. Furthermore, they unraveled a new mechanism of action of corticosteroids in inducing control of autoimmunity in MG via miR-146a.


Assuntos
Corticosteroides/uso terapêutico , Autoimunidade , Imunidade Inata , MicroRNAs/genética , Miastenia Gravis/tratamento farmacológico , Miastenia Gravis/imunologia , Prednisona/farmacologia , Prednisona/uso terapêutico , Timo/imunologia , Adolescente , Corticosteroides/farmacologia , Adulto , Linfócitos B/imunologia , Células Cultivadas , Criança , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Centro Germinativo/efeitos dos fármacos , Centro Germinativo/imunologia , Humanos , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Miastenia Gravis/sangue , RNA Mensageiro/genética , Transdução de Sinais/efeitos dos fármacos , Receptores Toll-Like/metabolismo , Resultado do Tratamento , Adulto Jovem
4.
Pharmacol Res ; 148: 104388, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31401213

RESUMO

Myasthenia gravis (MG) is an autoimmune disorder affecting neuromuscular transmission currently treated with chronic immunosuppression. Inter-subject variation in treatment response and side effects highlight the need for personalized therapies by identification of biomarkers predictive of drug efficacy in individual patients, still lacking in MG. MicroRNAs (miRNAs) play a key role in immune response and drug metabolism modulation. This study, part of an Italian-Israeli collaborative project, aimed to identify specific miRNAs as biomarkers associated with immunosuppressive treatment response in MG patients. Whole miRNome sequencing, followed by miRNA validation by real-time PCR, was performed in peripheral blood from Italian MG patients (n = 40) classified as responder and non-responder to immunosuppressive therapies. MiRNA sequencing identified 41 miRNAs differentially expressed in non-responder compared to responder Italian MG patients. Validation phase pointed out three miRNAs, miR-323b-3p, -409-3p, and -485-3p, clustered on chromosome 14q32.31, the levels of which were significantly decreased in non-responder versus responder patients, whereas miR-181d-5p and -340-3p showed an opposite trend. ROC curve analysis showed sensitivity and specificity performance results indicative of miR-323b-3p, -409-3p, and -485-3p predictive value for responsiveness to immunosuppressive drugs in MG. Validated miRNAs were further analyzed in blood from responder and non-responder MG patients of the Israeli population (n = 33), confirming a role for miR-323b-3p, -409-3p, -485-3p, -181d-5p and -340-3p as biomarkers of drug efficacy. Gene Ontology enrichment analysis, mRNA target prediction, and in silico modeling for function of the identified miRNAs disclosed functional involvement of the five miRNAs, and their putative target genes, in both immune (i.e. neurotrophin TRK and Fc-epsilon receptor signaling pathways) and drug metabolism processes. Our overall findings thus revealed a blood "miR-323b-3p, -409-3p, -485-3p, -181d-5p, and -340-3p" signature associated with drug responsiveness in MG patients. Its identification sets the basis for precision medicine approaches based on "pharmacomiRs" as biomarkers of drug responsiveness in MG, promising to improve therapeutic success in a cost/effective manner.


Assuntos
MicroRNAs/genética , Miastenia Gravis/genética , Adulto , Biomarcadores/sangue , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Medicina de Precisão , RNA Mensageiro/genética , Curva ROC , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...