Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 85(6): 064901, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24985836

RESUMO

Ionoluminescence (IL) and photoluminescence (PL) of trivalent erbium ions (Er(3+)) in Gd2O3 nanopowder host activated with Bi(3+) ions has been studied in order to establish the link between changes in luminescent spectra and temperature of the sample material. IL measurements have been performed with H2 (+) 100 keV ion beam bombarding the target material for a few seconds, while PL spectra have been collected for temperatures ranging from 20 °C to 700 °C. The PL data was used as a reference in determining the temperature corresponding to IL spectra. The collected data enabled the definition of empirical formula based on the Boltzmann distribution, which allows the temperature to be determined with a maximum sensitivity of 9.7 × 10(-3) °C(-1). The analysis of the Er(3+) energy level structure in terms of tendency of the system to stay in thermal equilibrium, explained different behaviors of the line intensities. This work led to the conclusion that temperature changes during ion excitation can be easily defined with separately collected PL spectra. The final result, which is empirical formula describing dependence of fluorescence intensity ratio on temperature, raises the idea of an application of method in temperature control, during processes like ion implantation and some nuclear applications.

2.
Opt Lett ; 37(24): 5214-6, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23258056

RESUMO

Temperature dependent emission spectra and decay times of trivalent dysprosium (Dy3) activated Y4Al2O9 (YAM) crystals have been studied for the first time (to our knowledge). The ratio of emission lines intensity can be used in temperature measurements, as it is not dependent on the variability of absolute intensity. The Boltzmann model was applied for modeling the temperature variation of the 4I15/2 and 4F9/2 states emissions relative intensities 455 and 481 nm, respectively. The calculated approximation gives highest sensor sensitivity of about 3×10(-3)°C-1 for the 600°C-800°C range, which allows for an expectation of usefulness of Dy3+:YAM in high-temperature luminescence thermometry. Also, the measured decay times are suitable for temperature sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...