Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 61(23): 8760-8766, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35649247

RESUMO

A highly reproducible, simple, and inexpensive synthesis method for obtaining phase-pure thermochromic monoclinic VO2 (M1) is presented. Vanadium(III) oxide and ammonium metavanadate were used as starting materials and no additional reducing agents are required. Heating a mixture of these two components under an argon atmosphere at 750 °C for 2-4 h provides the direct formation of VO2 (M1) without detectable impurity phases. The formation reaction of VO2 (M1) was studied using in situ powder X-ray diffraction (PXRD), where a pressed pellet of the precursor material was heated during the continuous collection of PXRD data on a two-dimensional detector. The formation takes place via at least two crystalline intermediate phases where the first forms at 170-185 °C (likely an ammonium and oxygen deficient (NH4)1-δVO3-δ phase), and the second at 230 °C (likely a more disordered phase due to the increased background intensity). We assume that the solid-state reaction between the unknown but likely disordered vanadate phase and vanadium(III) oxide starts at 395 °C in concert with the appearance of several other unknown crystalline phases. At 610-750 °C, phase-pure rutile VO2 (P42/mnm) is obtained, which upon cooling converts to monoclinic VO2 (M1). The product composition, microstructure, and homogeneity are characterized by Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The synthesized VO2 (M1) has a sharp reversible insulator-to-metal transition at 71.3 °C during heating and 59.5 °C during cooling, as characterized using differential scanning calorimetry, and resistivity and magnetic property measurements.

2.
Sci Rep ; 11(1): 22080, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764350

RESUMO

We present the synthesis, crystal structures and optical properties of three thiostannates prepared by using 1-(2-aminoethyl)piperazine (AEPz) as structure directing agent. Two of the thiostannates are layered materials (AEPz-SnS-1 and AEPz:EtOH-SnS-1) consisting of [Sn3S72-]n sheets with organic cations located in-between. The third compound is a molecular thiostannate (Sn2S6(AEPzH2)2) composed of dimeric Sn2S64- and AEPzH22+. In preparation of the layered compounds, the use of AEPz as the only solvent results in AEPz-SnS-1 with regular hexagonal pores and crystallographically disordered organic cations. In contrast, a mixture of AEPz and absolute ethanol gives AEPz:EtOH-SnS-1 with distorted hexagonal pores and ordered cations between the layers. The influence of cation order on the light absorption properties and the material thermal stability was investigated through thermal treatment of the layered compounds up to 200 °C. Both compounds show colour changes when heated, but cation order results in larger thermal stability. For AEPz-SnS-1, a decreased inter-layer distance and substantial loss of organic matter was observed when heated. However, pair distribution function analysis reveals that the local in-layer thiostannate structure of AEPz-SnS-1 remains unchanged. In contrast, AEPz:EtOH-SnS-1 does not undergo noticeable structural changes by the thermal treatment. All materials are optical semiconductors with band gaps of 3.0-3.1 eV.

3.
Rev Sci Instrum ; 92(9): 094711, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598479

RESUMO

Electrical four-terminal sensing at (sub-)micrometer scales enables the characterization of key electromagnetic properties within the semiconductor industry, including materials' resistivity, Hall mobility/carrier density, and magnetoresistance. However, as devices' critical dimensions continue to shrink, significant over/underestimation of properties due to a by-product Joule heating of the probed volume becomes increasingly common. Here, we demonstrate how self-heating effects can be quantified and compensated for via 3ω signals to yield zero-current transfer resistance. Under further assumptions, these signals can be used to characterize selected thermal properties of the probed volume, such as the temperature coefficient of resistance and/or the Seebeck coefficient.

4.
Nanoscale ; 12(21): 11601-11611, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32432631

RESUMO

A series of semicrystalline and amorphous one-dimensional (1D) polymeric chains consisting of cubane-like CoII4L4 units (L = S-1,2-bis(benzimidazol-2-yl)ethanol) and dicarboxylates were synthesized and characterized by single crystal diffraction and X-ray total scattering. The polycationic chains are composed of [Co4L4(dicarboxylate)]2+ monomeric units, while one molecular dicarboxylate counterion is balancing the charge of each monomer. The linear compound series has five members, and the crystal structures were solved for [Co4L4(tph)](tph) and [Co4L4(ndc)](ndc), where tph = terephthalate and ndc = 2,6-naphthalenedicarboxylate. Partly crystalline compounds were produced by slow assembly at elevated temperature (over days), while the amorphous compounds were formed by fast precipitation (within minutes). Pair distribution function (PDF) analysis based on X-ray total scattering data reveals the presence of the cubane-like entity in both the amorphous and semicrystalline samples. While the powders are non-porous, precipitation is a fast and versatile method to produce compounds with cubane-like centres with moderate surface areas of 17-49 m2 g-1 allowing for surface chemical reactions. The powders have a high concentration of Lewis base sites as verified by their selective adsorption of CO2 over N2. The use of an amorphous cubane-like polymer for the electrocatalytic oxygen evolution reaction was demonstrated.

5.
IUCrJ ; 7(Pt 1): 100-104, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31949909

RESUMO

The application of thermoelectrics for energy harvesting depends strongly on operational reliability and it is therefore desirable to investigate the structural integrity of materials under operating conditions. We have developed an operando setup capable of simultaneously measuring X-ray scattering data and electrical resistance on pellets subjected to electrical current. Here, operando investigations of ß-Zn4Sb3 are reported at current densities of 0.5, 1.14 and 2.3 A mm-2. At 0.5 A mm-2 no sample decomposition is observed, but Rietveld refinements reveal increased zinc occupancy from the anode to the cathode demonstrating zinc migration under applied current. At 1.14 A mm-2 ß-Zn4Sb3 decomposes into ZnSb, but pair distribution function analysis shows that Zn2Sb2 units are preserved during the decomposition. This identifies the mobile zinc in ß-Zn4Sb3 as the linkers between the Zn2Sb2 units. At 2.3 A mm-2 severe Joule heating triggers transition into the γ-Zn4Sb3 phase, which eventually decomposes into ZnSb, demonstrating Zn ion mobility also in γ-Zn4Sb3 under electrical current.

6.
IUCrJ ; 6(Pt 2): 299-304, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30867927

RESUMO

Characterization of local order in thin films is challenging with pair distribution function (PDF) analysis because of the minute mass of the scattering material. Here, it is demonstrated that reliable high-energy grazing-incidence total X-ray scattering data can be obtained in situ during thin-film deposition by radio-frequency magnetron sputtering. A benchmark system of Pt was investigated in a novel sputtering chamber mounted on beamline P07-EH2 at the PETRA III synchrotron. Robust and high-quality PDFs can be obtained from films as thin as 3 nm and atomistic modelling of the PDFs with a time resolution of 0.5 s is possible. In this way, it was found that a polycrystalline Pt thin film deposits with random orientation at 8 W and 2 × 10-2 mbar at room temperature. From the PDF it was found that the coherent-scattering domains grow with time. While the first layers are formed with a small tensile strain this relaxes towards the bulk value with increasing film thickness.

7.
Nat Chem ; 10(10): 1056-1061, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30202103

RESUMO

The unique properties of graphene, transition-metal dichalcogenides and other two-dimensional (2D) materials have boosted interest in layered coordination solids. In particular, 2D materials that behave as both conductors and magnets could find applications in quantum magnetoelectronics and spintronics. Here, we report the synthesis of CrCl2(pyrazine)2, an air-stable layered solid, by reaction of CrCl2 with pyrazine (pyz). This compound displays a ferrimagnetic order below ∼55 K, reflecting the presence of strong magnetic interactions. Electrical conductivity measurements demonstrate that CrCl2(pyz)2 reaches a conductivity of 32 mS cm-1 at room temperature, which operates through a 2D hopping-based transport mechanism. These properties are induced by the redox-activity of the pyrazine ligand, which leads to a smearing of the Cr 3d and pyrazine π states. We suggest that the combination of redox-active ligands and reducing paramagnetic metal ions represents a general approach towards tuneable 2D materials that consist of charge-neutral layers and exhibit both long-range magnetic order and high electronic conductivity.

8.
IUCrJ ; 4(Pt 4): 476-485, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28875034

RESUMO

The crystal structure uniquely imparts the specific properties of a material, and thus provides the starting point for any quantitative understanding of thermoelectric properties. Cu2-x Se is an intensely studied high performing, non-toxic and cheap thermoelectric material, and here for the first time, the average structure of ß-Cu2-x Se is reported based on analysis of multi-temperature single-crystal X-ray diffraction data. It consists of Se-Cu layers with additional copper between every alternate layer. The structural changes during the peculiar zT enhancing phase transition mainly consist of changes in the inter-layer distance coupled with subtle Cu migration. Just prior to the transition the structure exhibits strong negative thermal expansion due to the reordering of Cu atoms, when approached from low temperatures. The phase transition is fully reversible and group-subgroup symmetry relations are derived that relate the low-temperature ß-phase to the high-temperature α-phase. Weak superstructure reflections are observed and a possible Cu ordering is proposed. The structural rearrangement may have a significant impact on the band structure and the Cu rearrangement may also be linked to an entropy increase. Both factors potentially contribute to the extraordinary zT enhancement across the phase transition.

9.
Chem Commun (Camb) ; 49(58): 6540-2, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23764694

RESUMO

The effects of nano-sized TiO2 and ZnO ceramic inclusions on the high temperature stability of Zn4Sb3 have been studied using multi-temperature synchrotron powder X-ray diffraction. Samples with 9 nm TiO2 nanoinclusions exhibit remarkable stability after three heating cycles to 625 K.

11.
Rev Sci Instrum ; 83(12): 123902, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23278000

RESUMO

The implementation of the van der Pauw (VDP) technique for combined high temperature measurement of the electrical resistivity and Hall coefficient is described. The VDP method is convenient for use since it accepts sample geometries compatible with other measurements. The technique is simple to use and can be used with samples showing a broad range of shapes and physical properties, from near insulators to metals. Three instruments utilizing the VDP method for measurement of heavily doped semiconductors, such as thermoelectrics, are discussed.

12.
Dalton Trans ; 41(4): 1278-83, 2012 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-22127478

RESUMO

The thermoelectric properties of a PtSb(2) single crystal containing a stoichiometric gradient were investigated. The gradient was produced by employing a Stockbarger synthesis technique. The gradient was observed through the use of spatial resolved Seebeck coefficient measurements and verified utilizing X-Ray Diffraction and Energy Dispersive X-Ray Spectroscopy. The correlation between Pt/Sb ratio and physical property parameters--Seebeck coefficient, mobility, resistivity and charge carrier concentration--was studied. Elemental analysis by Energy Dispersive X-Ray Spectroscopy, X-Ray Fluorescence and Inductively Coupled Plasma revealed Sb deficiency in the crystal, which explains the observed high charge carrier concentration and metallic properties. The transport properties were measured in the temperature range T = 20-300 K on a polycrystalline sample. Furthermore, ab initio theoretical calculations have been conducted to support the interpretation of the measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...