Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(23): 12159-12166, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38815139

RESUMO

Microbial biological control agents are believed to be a potential alternative to classical fertilizers to increase the sustainability of agriculture. In this work, the formulation of Trichoderma afroharzianum T22 (T22) spores with carboxymethyl cellulose (CMC) and Pluronic F-127 (PF-127) solutions was investigated. Rheological and microscopical analysis were performed on T22-based systems at three different CMC/PF-127 concentrations, showing that polymer aggregates tend to surround T22 spores, without viscosity, and the viscoelastic properties of the formulations were affected. Contact angle measurements showed the ability of PF-127 to increase the wettability of the systems, and the effect of the formulations on the viability of the spores was evaluated. The viability of the spores was higher over 21 days in all the formulations, compared to the control in water, at 4 and 25 °C. Finally, the effectiveness of the formulations on sweet basil was estimated by greenhouse tests. The results revealed a beneficial effect of the CMC/PF-127 mixture, but none on the formulation with T22. The data show the potential of CMC/PF-127 mixtures for the future design of microorganism-based formulations.


Assuntos
Carboximetilcelulose Sódica , Poloxâmero , Trichoderma , Poloxâmero/química , Trichoderma/química , Carboximetilcelulose Sódica/química , Agricultura , Esporos Fúngicos/química
2.
ACS Appl Bio Mater ; 7(6): 3675-3686, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38743786

RESUMO

Cell therapy has the potential to become a feasible solution for several diseases, such as those related to the lungs and airways, considering the more beneficial intratracheal administration route. However, in lung diseases, an impaired pulmonary extracellular matrix (ECM) precludes injury resolution with a faulty engraftment of mesenchymal stem cells (MSCs) at the lung level. Furthermore, a shielding strategy to avoid cell damage as well as cell loss due to backflow through the injection path is required. Here, an approach to deliver cells encapsulated in a biomimetic stem niche is used, in which the interplay between cells and physiological lung ECM constituents, such as collagen and hyaluronic acid (HA), can occur. To this aim, a biphasic delivery system based on MSCs encapsulated in collagen microspheres (mCOLLs) without chemical modification and embedded in an injectable HA solution has been developed. Such biphasic delivery systems can both increase the mucoadhesive properties at the site of interest and improve cell viability and pulmonary differentiation. Rheological results showed a similar viscosity at high shear rates compared to the MSC suspension used in intratracheal administration. The size of the mCOLLs can be controlled, resulting in a lower value of 200 µm, suitable for delivery in alveolar sacs. Biological results showed that mCOLLs maintained good cell viability, and when they were suspended in lung medium implemented with low molecular weight HA, the differentiation ability of the MSCs was further enhanced compared to their differentiation ability in only lung medium. Overall, the results showed that this strategy has the potential to improve the delivery and viability of MSCs, along with their differentiation ability, in the pulmonary lineage.


Assuntos
Materiais Biocompatíveis , Diferenciação Celular , Colágeno , Ácido Hialurônico , Pulmão , Teste de Materiais , Células-Tronco Mesenquimais , Microesferas , Tamanho da Partícula , Ácido Hialurônico/química , Células-Tronco Mesenquimais/citologia , Diferenciação Celular/efeitos dos fármacos , Animais , Colágeno/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células Cultivadas , Soluções , Nicho de Células-Tronco
3.
PLoS One ; 19(2): e0293115, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38346085

RESUMO

AIM: Formulation of Pomegranate Extracts (PE)-loaded sphingosomes as an antitumor therapy for the intravenous and passive targeted delivery to various tumor types, especially that of the breast, colon, and uterus; to increase the therapeutic activity and decrease the adverse effects profile. METHODS: The pericarp and seeds' juice of Punica granatum were each extracted using D.W. and ethanol. Phytochemical investigation of all extracts was carried out including total phenolics, flavonoids, and anthocyanins contents, the antioxidant activity, as well as HPLC analysis of phenolics and flavonoids. The antitumor potential of all extracts was also tested utilizing three cell lines: MCF-7, HeLa, and HCT116. The candidate extract was chosen for the formulation phase and was entrapped into the sphingosomes using the thin-film hydration method and employing three different PE: lipids weight ratios. The synthesized formulations were characterized for their size, morphological features, zeta potential, entrapment efficiency, and in vitro drug release and kinetics modeling studies. The optimized formula was further analyzed by FTIR spectroscopy and electron microscopy. The antitumor activity of F2 was also investigated using the same cancer cell lines compared to the plant extract. RESULTS: The highest phenolics, flavonoids, and anthocyanins contents were observed in the ethanolic pericarps extract (EPE), followed by the ethanolic seeds extract (ESE). Consequently, EPE showed a higher antitumor activity hence it was selected for the formulation phase. PE-loaded sphingosomes formula (F2) was selected for having the highest EE% (71.64%), and a sustained release profile with the highest in vitro release (42.5±9.44%). By employing the DDSolver, the Weibull model was found the most suitable to describe the PE release kinetics compared to other models. The release mechanism was found to follow Fickian diffusion. Simulated pharmacokinetic parameters have portrayed F2 as the candidate formula, with the highest AUC (536.095) and slowest MDT (0.642 h). In addition, F2 exhibited a significant (p>0.05) stronger and prolonged anticancer effect against MCF-7, HeLa, and HCT116 cell lines at all concentrations tested compared to the free extract. CONCLUSION: The results proved that sphingosomes are an effective delivery system, improving pharmacological efficacy and reducing serious side effects of anticancer medications and natural products.


Assuntos
Neoplasias , Punica granatum , Feminino , Humanos , Antocianinas/farmacologia , Extratos Vegetais/química , Neoplasias/tratamento farmacológico , Compostos Fitoquímicos , Fenóis , Flavonoides/farmacologia
4.
Gels ; 10(1)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38247789

RESUMO

The use of fillers for soft tissue augmentation is an approach to restore the structure in surgically or traumatically created tissue voids. Hyaluronic acid (HA), is one of the main components of the extracellular matrix, and it is widely employed in the design of materials with features similar to human tissues. HA-based fillers already find extensive use in soft tissue applications, but are burdened with inherent drawbacks, such as poor thermal stability. A well-known strategy to improve the HA properties is to reticulate it with 1,4-Butanediol diglycidyl ether (BDDE). The aim of this work was to improve the design of HA hydrogels as fillers, by developing a crosslinking HA method with carboxymethyl cellulose (CMC) by means of BDDE. CMC is a water soluble cellulose ether, whose insertion into the hydrogel can lead to increased thermal stability. HA/CMC hydrogels at different ratios were prepared, and their rheological properties and thermal stability were investigated. The hydrogel with an HA/CMC ratio of 1/1 resulted in the highest values of viscoelastic moduli before and after thermal treatment. The morphology of the hydrogel was examined via SEM. Biocompatibility response, performed with the Alamar blue assay on fibroblast cells, showed a safety percentage of around 90% until 72 h.

5.
Med Oncol ; 41(1): 5, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038783

RESUMO

Approximately, 15% of global breast cancer cases are diagnosed as triple-negative breast cancer (TNBC), identified as the most aggressive subtype due to the simultaneous absence of estrogen receptor, progesterone receptor, and HER2. This characteristic renders TNBC highly aggressive and challenging to treat, as it excludes the use of effective drugs such as hormone therapy and anti-HER2 agents. In this review, we explore standard therapies and recent emerging approaches for TNBC, including PARP inhibitors, immune checkpoint inhibitors, PI3K/AKT pathway inhibitors, and cytotoxin-conjugated antibodies. The mechanism of action of these drugs and their utilization in clinical practice is explained in a pragmatic and prospective manner, contextualized within the current landscape of standard therapies for this pathology. These advancements present a promising frontier for tailored interventions with the potential to significantly improve outcomes for TNBC patients. Interestingly, while TNBC poses a complex challenge, it also serves as a paradigm and an opportunity for translational research and innovative therapies in the field of oncology.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Fosfatidilinositol 3-Quinases , Estudos Prospectivos , Inibidores da Angiogênese/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
6.
Pharmaceutics ; 15(7)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37514149

RESUMO

Solid lipid nanoparticles promote skin hydration via stratum corneum occlusion, which prevents water loss by evaporation, and via the reinforcement of the skin's lipid-film barrier, which occurs through the adhesion of the nanoparticles to the stratum corneum. The efficacy of both phenomena correlates with lower nanoparticle size and the increased skin permeation of loaded compounds. The so-called Polysorbate Sorbitan Phase-Inversion Temperature method has, therefore, been optimized in this experimental work, in order to engineer ultrasmall solid-lipid nanoparticles that were then loaded with α-tocopherol, as the anti-age ingredient for cosmetic application. Ultrasmall solid-lipid nanoparticles have been proven to be able to favor the skin absorption of loaded compounds via the aforementioned mechanisms.

7.
Polymers (Basel) ; 15(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299328

RESUMO

Currently, most of the clinically available surgical glues and sealants lack elasticity, good adhesion and biocompatibility properties. Hydrogels as tissue adhesives have received extensive attention for their tissue-mimicking features. Here, a novel surgical glue hydrogel based on a fermentation-derived human albumin (rAlb) and biocompatible crosslinker for tissue-sealant applications has been developed. In order to reduce the risks of viral transmission diseases and an immune response, Animal-Free Recombinant Human Albumin from the saccharomyces yeast strain was used. A more biocompatible crosslinking agent, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), was used and compared with glutaraldehyde (GA). The design of crosslinked albumin-based adhesive gels was optimized by varying the albumin concentration, the mass ratio between albumin and the crosslinking agent as well as the crosslinker type. Tissue sealants were characterized in terms of mechanical (tensile and shear), adhesive and in vitro biocompatibility properties. The results indicated that the mechanical and adhesive properties improved as the albumin concentration increased and the mass ratio between albumin and crosslinker decreased. Moreover, the EDC-crosslinked albumin gels have better biocompatibility properties than GA-crosslinked glues.

8.
Macromol Biosci ; 23(6): e2300035, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37025040

RESUMO

Pulmonary niche dynamically orchestrates the signals, such as proliferation or differentiation of mesenchymal stem cells (MSCs), which allows inducing tissue repair. Lung niche includes extracellular matrix (ECM), comprising hyaluronic acid (HA) and collagen (COLL), and several types of MSCs. Impaired ECM, in lung pathologies, makes the promising therapies based on MSCs ineffective, as it results in a reduced attachment and homing of MSCs, precluding their differentiation and viability. To overcome this problem, in this study a pulmonary biomimetic niche based on HA and COLL hydrogel is developed, with the specific aim to elucidate the role of COLL and HA/COLL semi-interpenetrating polymer networks (SIPNs) in directing the differentiation of MSCs into Alveolar Type II (ATII) cells. The effect of low (L), medium (M), and high (H) molecular weight (MW) HA is investigated, both like structural component of the SIPNs hydrogel and like trophic factor in cell culture media solution. HA in the culture media significantly improves surfactant protein (SP)-C expression (≈2 ng mL-1 ), without showing difference in the MW tested, compared to control only (≈1 ng mL-1 ). Furthermore, LMWHA/COLL hydrogel promotes the SPC expression (approximately two times) compared to COLL, MMWHA/COLL, and HMWHA/COLL hydrogels.


Assuntos
Células Epiteliais Alveolares , Células-Tronco Mesenquimais , Células Epiteliais Alveolares/metabolismo , Biomimética , Colágeno/farmacologia , Ácido Hialurônico/farmacologia , Ácido Hialurônico/química , Hidrogéis/química , Diferenciação Celular
9.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835068

RESUMO

Pharmacological therapies in lung diseases are nowadays useful in reducing the symptomatology of lung injury. However, they have not yet been translated to effective treatment options able to restore the lung tissue damage. Cell-therapy based on Mesenchymal Stem Cells (MSCs) is an attractive, as well as new therapeutic approach, although some limitations can be ascribed for therapeutic use, such as tumorigenicity and immune rejection. However, MSCs have the capacity to secrete multiple paracrine factors, namely secretome, capable of regulating endothelial and epithelial permeability, decrease inflammation, enhancing tissue repair, and inhibiting bacterial growth. Furthermore, Hyaluronic acid (HA) has been demonstrated to have particularly efficacy in promoting the differentiation of MSCs in Alveolar type II (ATII) cells. In this frame, the combination of HA and secretome to achieve the lung tissue regeneration has been investigated for the first time in this work. Overall results showed how the combination of HA (low and medium molecular weight HA) plus secretome could enhance MSCs differentiation in ATII cells (SPC marker expression of about 5 ng/mL) compared to the only HA or secretome solutions alone (SPC about 3 ng/mL, respectively). Likewise, cell viability and cell rate of migration were reported to be improved for HA and secretome blends, indicating an interesting potentiality of such systems for lung tissue repair. Moreover, an anti-inflammatory profile has been revealed when dealing with HA and secretome mixtures. Therefore, these promising results can allow important advance in the accomplishment of the future therapeutic approach in respiratory diseases, up to date still missing.


Assuntos
Ácido Hialurônico , Células-Tronco Mesenquimais , Ácido Hialurônico/metabolismo , Secretoma , Células-Tronco Mesenquimais/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Pulmão/fisiologia
10.
Lab Chip ; 23(5): 1389-1409, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36647782

RESUMO

Nanoparticle systems are functional carriers that can be used in the cancer therapy field for the delivery of a variety of hydrophobic and/or hydrophilic drugs. Recently, the advent of microfluidic platforms represents an advanced approach to the development of new nanoparticle-based drug delivery systems. Particularly, microfluidics can simplify the design of new nanoparticle-based systems with tunable physicochemical properties such as size, size distribution and morphology, ensuring high batch-to-batch reproducibility and consequently, an enhanced therapeutic effect in vitro and in vivo. In this perspective, we present accurate state-of-the-art microfluidic platforms focusing on the fabrication of polymer-based, lipid-based, lipid/polymer-based, inorganic-based and metal-based nanoparticles for biomedical applications.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , Microfluídica , Reprodutibilidade dos Testes , Sistemas de Liberação de Medicamentos , Polímeros/química , Nanopartículas/química , Lipídeos/química
11.
Polymers (Basel) ; 14(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080642

RESUMO

Heparin plays multiple biological roles depending on the availability of active sites strongly influenced by the conformation and the structure of polysaccharide chains. Combining different components at the molecular scale offers an extraordinary chance to easily tune the structural organization of heparin required for exploring new potential applications. In fact, the combination of different material types leads to challenges that cannot be achieved by each single component. In this study, hybrid heparin/silica nanoparticles were synthesized, and the role of silica as a templating agent for heparin supramolecular organization was investigated. The effect of synthesis parameters on particles compositions was deeply investigated by Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetric Analysis (TGA). Transmission Electron Microscopy (TEM) reveals a different supramolecular organization of both components, leading to amazing organic-inorganic nanoparticles with different behavior in drug encapsulation and release. Furthermore, favorable biocompatibility for healthy human dermal fibroblasts (HDF) and tumor HS578T cells has been assessed, and a different biological behavior was observed, ascribed to different surface charge and morphology of synthesized nanoparticles.

12.
Int J Biol Macromol ; 220: 920-933, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987365

RESUMO

Non-healing wounds have long been the subject of scientific and clinical investigations. Despite breakthroughs in understanding the biology of delayed wound healing, only limited advances have been made in properly treating wounds. Recently, research into nucleic acids (NAs) such as small-interfering RNA (siRNA), microRNA (miRNA), plasmid DNA (pDNA), aptamers, and antisense oligonucleotides (ASOs) has resulted in the development of a latest therapeutic strategy for wound healing. In this regard, dendrimers, scaffolds, lipid nanoparticles, polymeric nanoparticles, hydrogels, and metal nanoparticles have all been explored as NA delivery techniques. However, the translational possibility of NA remains a substantial barrier. As a result, different NAs must be identified, and their distribution method must be optimized. This review explores the role of NA-based therapeutics in various stages of wound healing and provides an update on the most recent findings in the development of NA-based nanomedicine and biomaterials, which may offer the potential for the invention of novel therapies for this long-term condition. Further, the challenges and potential for miRNA-based techniques to be translated into clinical applications are also highlighted.


Assuntos
Dendrímeros , MicroRNAs , Ácidos Nucleicos , Materiais Biocompatíveis , DNA , Dendrímeros/uso terapêutico , Hidrogéis , Lipossomos , MicroRNAs/genética , MicroRNAs/uso terapêutico , Nanopartículas , Ácidos Nucleicos/uso terapêutico , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Cicatrização
13.
Biomater Adv ; 140: 213077, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35952549

RESUMO

Overall, aptamers are special classes of nucleic acid-based macromolecules that are beginning to investigate because of their capability of avidity binding to a specific target for clinical use. Taking advantage of target-specific medicine led to more effective therapeutic and limitation of side effects of drugs. Herein, we discuss several aptamers and their binding capability and capacity for selecting tumor biomarkers and usage of them as targeting ligands for the functionalization of nanomaterials. We review recent applications based on aptamers and several nanoparticles to rise efficacy and develop carrier systems such as graphene oxide, folic acid, gold, mesopores silica, and various polymers and copolymer, polyethylene glycol, cyclodextrin, chitosan. The nanocarriers have been characterized by particle size, zeta potential, aptamer conjugation, and drug encapsulation efficiency. Hydrodynamic diameter and Zeta potential can used in order to monitor aptamers' crosslinking, in-vitro drug release, intracellular delivery of nanocarriers, and cellular cytotoxicity assay. Also, they are studied for cellular uptake and internalization to types of cancer cell lines such as colorectal, breast, prostate, leukemia and etc. The results are investigated in in-vivo cytotoxicity assay and cell viability assay. Targeted cancer therapy seems a good and promising strategy to overcome the systemic toxicity of chemotherapy.


Assuntos
Aptâmeros de Nucleotídeos , Nanopartículas , Neoplasias , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Excipientes , Humanos , Masculino , Neoplasias/tratamento farmacológico , Polietilenoglicóis/química , Polímeros
14.
Adv Healthc Mater ; 11(20): e2201583, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35916145

RESUMO

Conventional drug delivery systems are challenged by concerns related to systemic toxicity, repetitive doses, drug concentrations fluctuation, and adverse effects. Various drug delivery systems are developed to overcome these limitations. Nanomaterials are employed in a variety of biomedical applications such as therapeutics delivery, cancer therapy, and tissue engineering. Physiochemical nanoparticle assembly techniques involve the application of solvents and potentially harmful chemicals, commonly at high temperatures. Genetically engineered organisms have the potential to be used as promising candidates for greener, efficient, and more adaptable platforms for the synthesis and assembly of nanomaterials. Genetically engineered carriers are precisely designed and constructed in shape and size, enabling precise control over drug attachment sites. The high accuracy of these novel advanced materials, biocompatibility, and stimuli-responsiveness, elucidate their emerging application in controlled drug delivery. The current article represents the research progress in developing various genetically engineered carriers. Organic-based nanoparticles including cellulose, collagen, silk-like polymers, elastin-like protein, silk-elastin-like protein, and inorganic-based nanoparticles are discussed in detail. Afterward, viral-based carriers are classified, and their potential for targeted therapeutics delivery is highlighted. Finally, the challenges and prospects of these delivery systems are concluded.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Fármacos por Nanopartículas , Celulose , Portadores de Fármacos/química , Elastina , Sistemas de Liberação de Fármacos por Nanopartículas/química , Polímeros , Seda
15.
ACS Omega ; 7(12): 10039-10048, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35382294

RESUMO

Hyaluronic acid (HA) and its derivatives are widely used for intra-articular injection to augment compromised viscoelastic properties of damaged synovial fluid. Combining HA-based devices with anti-inflammatory drugs or bioactive principles in order to provide an additional benefit to the viscosupplementation is emerging as a new promising approach to improve the clinical outcome. Here, we aim to design a novel active viscosupplementation agent that can load and release hydrophobic drugs and at the same time possessing antioxidant properties. Optimized ternary systems named HCV based on HA, (2-hydroxypropyl)-ß-cyclodextrin (CD), and vitamin E (VE), without being engaged in formal chemical bonding with each other, showed the best viscoelastic and lubrication properties along with antioxidant capabilities, able to solubilize and release DF. The physical-chemical characterization suggested that the HCV system displayed rheological synergism and higher thermal stability because of the presence of VE and its antioxidant activity, and the loading of hydrophobic drugs was improved by the presence of CD and VE. Cell morphology and viability tests on L929 cells exhibited high biocompatibility of the HCV system with higher level expression of anti-inflammatory interleukin-10.

16.
Macromol Biosci ; 22(1): e2100304, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34657388

RESUMO

Cancer is the main cause of fatality all over the world with a considerable growth rate. Many biologically active nanoplatforms are exploited for tumor treatment. Of nanodevices, hyaluronic acid (HA)-based systems have shown to be promising candidates for cancer therapy due to their high biocompatibility and cell internalization. Herein, surface functionalization of different nanoparticles (NPs), e.g., organic- and inorganic-based NPs, is highlighted. Subsequently, HA-based nanostructures and their applications in cancer therapy are presented.


Assuntos
Nanopartículas , Nanoestruturas , Neoplasias , Linhagem Celular Tumoral , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Ácido Hialurônico/uso terapêutico , Nanopartículas/química , Neoplasias/tratamento farmacológico
17.
Colloids Surf B Biointerfaces ; 210: 112240, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34864635

RESUMO

Here we aimed to correlate different molecular weights of hyaluronic acid (HA), 200, 800 and 1437 kDa, used to decorate poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs), to their cell uptakes. NP internalization kinetics in CD44-overexpressing breast carcinoma cells were quantified, using healthy fibroblast cells as reference. Actually, NP uptake and selectivity by tumor cells were maximized for NPs HA 800 kDa, while being minimum for NPs HA1400 kDa. This unexpected result could be explained considering that the interaction between NPs and tumor cells is dictated by rearrangement and conformation of that segment of HA chain that actually protrudes from the NPs. Overall, results obtained in this work point at how HA molecular weight, is pivotal project parameter in NP formulation to promote active targeting in the CD44 overexpressing cancer cells.


Assuntos
Ácido Hialurônico , Nanopartículas , Linhagem Celular Tumoral , Receptores de Hialuronatos , Peso Molecular , Polissacarídeos
18.
Polymers (Basel) ; 13(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502968

RESUMO

Hyaluronic acid (HA) is an essential component of the extracellular matrix (ECM) of the healthy lung, playing an important role in the structure of the alveolar surface stabilizing the surfactant proteins. Alveolar type II (ATII) cells are the fundamental element of the alveolus, specializing in surfactant production. ATII cells represent the main target of lung external lesion and a cornerstone in the repair process of pulmonary damage. In this context, knowledge of the factors influencing mesenchymal stem cell (MSC) differentiation in ATII cells is pivotal in fulfilling therapeutic strategies based on MSCs in lung regenerative medicine. To achieve this goal, the role of HA in promoting the differentiation of MSCs in mature Type II pneumocytes capable of secreting pulmonary surfactant was evaluated. Results demonstrated that HA, at a specific molecular weight can greatly increase the expression of lung surfactant protein, indicating the ability of HA to influence MSC differentiation in ATII cells.

19.
Pathogens ; 10(7)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34358020

RESUMO

Increasing attention is being given to the development of innovative formulations to substitute the use of synthetic chemicals to improve agricultural production and resource use efficiency. Alternatives can include biological products containing beneficial microorganisms and bioactive metabolites able to inhibit plant pathogens, induce systemic resistance and promote plant growth. The efficacy of such bioformulations can be increased by the addition of polymers as adjuvants or carriers. Trichoderma afroharzianum T22, Azotobacter chroococcum 76A and 6-pentyl-α-pyrone (6PP; a Trichoderma secondary metabolite) were administrated singularly or in a consortium, with or without a carboxymethyl cellulose-based biopolymer (BP), and tested on sweet basil (Ocimum basilicum L.) grown in a protected greenhouse. The effect of the treatments on basil yield, photosynthetic activity and secondary metabolites production was assessed. Photosynthetic efficiency was augmented by the applications of the bioformulations. The applications to the rhizosphere with BP + 6PP and BP + T22 + 76A increased the total fresh weight of basil by 26.3% and 23.6%, respectively. Untargeted LC-MS qTOF analysis demonstrated that the plant metabolome was significantly modified by the treatments. Quantification of the profiles for the major phenolic acids indicated that the treatment with the T22 + 76A consortium increased rosmarinic acid content by 110%. The use of innovative bioformulations containing microbes, their metabolites and a biopolymer was found to modulate the cultivation of fresh basil by improving yield and quality, thus providing the opportunity to develop farming systems with minimal impact on the environmental footprint from the agricultural production process.

20.
Mater Sci Eng C Mater Biol Appl ; 122: 111920, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33641913

RESUMO

The aim of this study was the development of antimicrobial polyvinylchloride (PVC) blends loaded with 0.1-10% (w/w) of the ILs 1-hexadecyl-3-methylimidazolium 1,3-dimethyl 5-sulfoisophthalate (HdmimDMSIP) and 1-octyloximethyl-3-methylimidazolium hexafluorophosphate (OOMmimPF6). The synthetized ILs were characterized by 1HNMR, MALDI-TOF, DSC and TGA. PVC/ILs films were obtained by solvent casting.Thermal and mechanical properties (tensile stress TS and elongation at break EB), morphology by SEM, surface wettability, antimicrobial activity, cytotoxicity and ILs release in sterile water from PVC/ILs film blends were determined. Results demonstrated that the presence of both ILs in PVC formulation slightly affected thermal and mechanical properties of blends. The loading of both ILs into PVC matrix made PVC/ILs films hydrophilic, especially at the highest concentration of HdmimDMSIP. The PVC/ILs blends displayed antibacterial activity up to ILs lowest concentrations (0.1-0.5%). The inhibition of Escherichia coli growth was lower than that showed toward Staphylococcus epidermidis. The addition of 10% ILs concentration resulted excessive as demonstrated by accumulation of ILs on film surfaces (SEM) and ILs high release from PVC/ILs blends during the first day of water immersion. Biocompatibility studies highlighted that the addition of low amounts of both ILs into PVC matrix is not cytotoxic for mouse fibroblast cells (L929), supporting their potential use for biomedical porposes.


Assuntos
Anti-Infecciosos , Líquidos Iônicos , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Cloreto de Polivinila
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...