Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 24(15)2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31344953

RESUMO

Tempeh is a common food in Indonesia, produced by fungal fermentation of soybeans using Rhizopus sp., as well as Aspergillus oryzae, for inoculation. Analogously, for economic reasons, mixtures of maize and soybeans are used for the production of so-called tempeh-like products. For maize, a contamination with the mycoestrogen zearalenone (ZEN) has been frequently reported. ZEN is a mycotoxin which is known to be metabolized by Rhizopus and Aspergillus species. Consequently, this study focused on the ZEN transformation during tempeh fermentation. Five fungal strains of the genera Rhizopus and Aspergillus, isolated from fresh Indonesian tempeh and authentic Indonesian inocula, were utilized for tempeh manufacturing from a maize/soybean mixture (30:70) at laboratory-scale. Furthermore, comparable tempeh-like products obtained from Indonesian markets were analyzed. Results from the HPLC-MS/MS analyses show that ZEN is intensely transformed into its metabolites α-zearalenol (α-ZEL), ZEN-14-sulfate, α-ZEL-sulfate, ZEN-14-glucoside, and ZEN-16-glucoside in tempeh production. α-ZEL, being significantly more toxic than ZEN, was the main metabolite in most of the Rhizopus incubations, while in Aspergillus oryzae fermentations ZEN-14-sulfate was predominantly formed. Additionally, two of the 14 authentic samples were contaminated with ZEN, α-ZEL and ZEN-14-sulfate, and in two further samples, ZEN and α-ZEL, were determined. Consequently, tempeh fermentation of ZEN-contaminated maize/soybean mixture may lead to toxification of the food item by formation of the reductive ZEN metabolite, α-ZEL, under model as well as authentic conditions.


Assuntos
Fermentação , Alimentos de Soja , Zearalenona/biossíntese , Fungos/metabolismo , Estrutura Molecular , Alimentos de Soja/classificação , Alimentos de Soja/normas , Fluxo de Trabalho , Zea mays/metabolismo , Zearalenona/química , Zeranol/análogos & derivados , Zeranol/química , Zeranol/metabolismo
2.
Toxins (Basel) ; 10(7)2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29987228

RESUMO

To keep pace with the rising number of detected mycotoxins, there is a growing need for fast and reliable toxicity tests to assess potential threats to food safety. Toxicity tests with the bacterial-feeding nematode Caenorhabditis elegans as the model organism are well established. In this study the C. elegans wildtype strain N2 (var. Bristol) was used to investigate the toxic effects of the food-relevant mycotoxins citrinin (CIT) and zearalenone-14-sulfate (ZEA-14-S) and zearalenone (ZEA) on different life cycle parameters including reproduction, thermal and oxidative stress resistance and lifespan. The metabolization of the mycotoxins by the nematodes in vivo was investigated using HPLC-MS/MS. ZEA was metabolized in vivo to the reduced isomers α-zearalenol (α-ZEL) and β-ZEL. ZEA-14-S was reduced to α-/β-ZEL-14-sulfate and CIT was metabolized to mono-hydroxylated CIT. All mycotoxins tested led to a significant decrease in the number of nematode offspring produced. ZEA and CIT displayed negative effects on stress tolerance levels and for CIT an additional shortening of the mean lifespan was observed. In the case of ZEA-14-S, however, the mean lifespan was prolonged. The presented study shows the applicability of C. elegans for toxicity testing of emerging food mycotoxins for the purpose of assigning potential health threats.


Assuntos
Citrinina/toxicidade , Zearalenona/análogos & derivados , Zearalenona/toxicidade , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo
3.
Toxins (Basel) ; 10(3)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29494480

RESUMO

Zearalenone (ZEN) and its phase II sulfate and glucoside metabolites have been detected in food and feed commodities. After consumption, the conjugates can be hydrolyzed by the human intestinal microbiota leading to liberation of ZEN that implies an underestimation of the true ZEN exposure. To include ZEN conjugates in routine analysis, reliable standards are needed, which are currently not available. Thus, the aim of the present study was to develop a facilitated biosynthesis of ZEN-14-sulfate, ZEN-14-glucoside and ZEN-16-glucoside. A metabolite screening was conducted by adding ZEN to liquid fungi cultures of known ZEN conjugating Aspergillus and Rhizopus strains. Cultivation conditions and ZEN incubation time were varied. All media samples were analyzed for metabolite formation by HPLC-MS/MS. In addition, a consecutive biosynthesis was developed by using Fusarium graminearum for ZEN biosynthesis with subsequent conjugation of the toxin by utilizing Aspergillus and Rhizopus species. ZEN-14-sulfate (yield: 49%) is exclusively formed by Aspergillus oryzae. ZEN-14-glucoside (yield: 67%) and ZEN-16-glucoside (yield: 39%) are formed by Rhizopus oryzae and Rhizopusoligosporus, respectively. Purities of ≥73% ZEN-14-sulfate, ≥82% ZEN-14-glucoside and ≥50% ZEN-16-glucoside were obtained by ¹H-NMR. In total, under optimized cultivation conditions, fungi can be easily utilized for a targeted and regioselective synthesis of ZEN conjugates.


Assuntos
Aspergillus oryzae/metabolismo , Fusarium/metabolismo , Glucosídeos/biossíntese , Rhizopus/metabolismo , Sulfatos/metabolismo , Zearalenona/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...