Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Microgravity ; 10(1): 77, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030203

RESUMO

Evaporation control is a critical facility resource during solidification experiments that limits processing time and must be tracked to ensure facility health. A thermodynamic analysis was performed on a ternary FeCrNi sample processed onboard the International Space Station (ISS) using ESA Electromagnetic Levitation (EML) facility in a microgravity environment. A non-ideal solution-based mathematical model was applied for the overall sample mass loss prediction during this study. The overall sample mass loss prediction is consistent with the post-flight mass loss measurements. The species-specific findings from this study were validated using post-mission SEM-EDX surface evaluations by three different facilities. The bulk composition prediction was validated using SEM-EDX and wet chemical analysis. The non-ideal solution model was then applied to predict the composition of the dust generated during EML testing. The thicknesses of the deposited layer on the EML coil at various locations were also calculated using the geometry of the facility and results were validated with near-real-time dust layer predictions from toxicity tracking software developed by the German Space Center (DLR) Microgravity User Support Center (MUSC).

2.
RSC Adv ; 12(40): 26362-26371, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36275118

RESUMO

High-entropy materials are compositionally complex materials which often contain five or more elements. The most commonly studied materials in this field are alloys and oxides, where their composition allows for tunable materials properties. High-entropy layered double hydroxides have been recently touted as the next focus for the field of high-entropy materials to expand into. However, most previous work on multi-cationic layered double hydroxides has focused on syntheses with 5 or less cations in the structure. To bridge this gap into high-entropy materials, this work explores the range and extent of different compositional combinations for high-entropy double layered hydroxides. Specifically, pure layered double hydroxides were synthesized with different combinations of 7 cations (Mg, Co, Cu, Zn, Ni, Al, Fe, Cr) as well as one combination of 8 cations by utilizing a hydrothermal synthesis method. Furthermore, magnetic properties of the 8-cation LDH were investigated.

3.
Polymers (Basel) ; 14(17)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36080750

RESUMO

Biocompatible polymer films demonstrating excellent thermal stability are highly desirable for high-temperature (>250 °C) applications, especially in the bioelectronic encapsulation domain. Parylene, as an organic thin film, is a well-established polymer material exhibiting excellent barrier properties and is often the material of choice for biomedical applications. This work investigated the thermal impact on the bulk properties of four types of parylene films: parylene N, C, VT4, and AF4. The films, deposited using the standard Gorham process, were analyzed at varying annealing temperatures from room temperature up to 450 °C. Thermal properties were identified by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) methods, while X-ray diffraction (XRD) analysis showed the effect of high-temperature exposure on the structural properties. In addition to thermal and structural analysis, the barrier properties were measured through the helium transmission rate (HTR) and the water vapor transmission rate (WVTR). Fluorinated parylene films were confirmed to be exceptional materials for high-temperature applications. Parylene AF4 film, 25um thick, demonstrated excellent barrier performance after 300 °C exposure, with an HTR and a WVTR of 12.18 × 103 cm3 (STP) m−2 day−1 atm−1 and 6.6 g m−2 day−1, respectively.

4.
Nanoscale Adv ; 4(13): 2929-2941, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36131996

RESUMO

Electrospun nanofibers have shown great potential as drug vehicles and tissue engineering scaffolds. However, the successful encapsulation of multiple hydrophilic/hydrophobic therapeutic compounds is still challenging. Herein, sodium alginate/poly(ε-caprolactone) core/shell nanofibers were fabricated via water-in-oil emulsion electrospinning. The sodium alginate concentration, water-to-oil ratio, and surfactant concentration were optimized for the maximum stability of the emulsion. The results demonstrated that an increasing water-to-oil ratio results in more deviation from Newtonian fluid and leads to a broader distribution of the fibers' diameters. Moreover, increasing poly(ε-caprolactone) concentration increases loss and storage moduli and increases the diameter of the resulting fibers. The nanofibers' characteristics were investigated by scanning electron microscopy, transmission electron microscopy, confocal laser scanning microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and water contact angle measurements. It was observed that using an emulsion composition of 10% (w/v) PCL and a water-to-oil ratio of 0.1 results in smooth, cylindrical, and uniform core/shell nanofibers with PCL in the shell and ALG in the core. The in vitro cell culture study demonstrated the favorable biocompatibility of nanofibers. Overall, this study provides a promising and trustworthy material for biomedical applications.

5.
Small Methods ; 6(2): e2100932, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34951155

RESUMO

The reliability of semiconductor materials with electrical and optical properties are connected to their structures. The elastic strain field and tilt analysis of the crystal lattice, detectable by the variation in position and shape of the diffraction peaks, is used to quantify defects and investigate their mobility. The exploitation of high-resolution X-ray diffraction-based methods for the evaluation of structural defects in semiconductor materials and devices is reviewed. An efficient and non-destructive characterization is possible for structural parameters such as, lattice strain and tilt, layer composition and thickness, lattice mismatch, and dislocation density. The description of specific experimental diffraction geometries and scanning methods is provided. Today's X-ray diffraction based methods are evaluated and compared, also with respect to their applicability limits. The goal is to understand the close relationship between lattice strain and structural defects. For different material systems, the appropriate analytical methods are highlighted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...