Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 37(3): 338-346, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38171380

RESUMO

Similar to plant pathogens, phloem-feeding insects such as aphids deliver effector proteins inside their hosts that act to promote host susceptibility and enable feeding and infestation. Despite exciting progress toward identifying and characterizing effector proteins from these insects, their functions remain largely unknown. The recent groundbreaking development in protein structure prediction algorithms, combined with the availability of proteomics and transcriptomic datasets for agriculturally important pests, provides new opportunities to explore the structural and functional diversity of effector repertoires. In this study, we sought to gain insight into the infection strategy used by the Myzus persicae (green peach aphid) by predicting and analyzing the structures of a set of 71 effector candidate proteins. We used two protein structure prediction methods, AlphaFold and OmegaFold, that produced mutually consistent results. We observed a wide continuous spectrum of structures among the effector candidates, from disordered proteins to globular enzymes. We made use of the structural information and state-of-the-art computational methods to predict M. persicae effector protein properties, including function and interaction with host plant proteins. Overall, our investigation provides novel insights into prediction of structure, function, and interaction of M. persicae effector proteins and will guide the necessary experimental characterization to address new hypotheses. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Afídeos , Animais , Transcriptoma , Perfilação da Expressão Gênica , Proteínas de Plantas/genética
2.
Mol Plant Microbe Interact ; 37(3): 211-219, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38148271

RESUMO

Phloem-feeding insects include many important agricultural pests that cause crop damage globally, either through feeding-related damage or upon transmission of viruses and microbes that cause plant diseases. With genetic crop resistances being limited to most of these pests, control relies on insecticides, which are costly and damaging to the environment and to which insects can develop resistance. Like other plant parasites, phloem-feeding insects deliver effectors inside their host plants to promote susceptibility, most likely by a combination of suppressing immunity and promoting nutrient availability. The recent emergence of the effector paradigm in plant-insect interactions is highlighted by increasing availability of effector repertoires for a range of species and a broadening of our knowledge concerning effector functions. Here, we focus on recent progress made toward identification of effector repertoires from phloem-feeding insects and developments in effector biology that will advance functional characterization studies. Importantly, identification of effector activities from herbivorous insects promises to provide new avenues toward development of crop protection strategies. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Floema , Saliva , Animais , Saliva/metabolismo , Floema/metabolismo , Insetos , Plantas , Herbivoria
3.
New Phytol ; 235(4): 1599-1614, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35491752

RESUMO

Pathogens and pests secrete proteins (effectors) to interfere with plant immunity through modification of host target functions and disruption of immune signalling networks. The extent of convergence between pathogen and herbivorous insect virulence strategies is largely unexplored. We found that effectors from the oomycete pathogen, Phytophthora capsici, and the major aphid pest, Myzus persicae target the host immune regulator SIZ1, an E3 SUMO ligase. We used transient expression assays in Nicotiana benthamiana as well as Arabidopsis mutants to further characterize biological role of effector-SIZ1 interactions in planta. We show that the oomycete and aphid effector, which both contribute to virulence, feature different activities towards SIZ1. While M. persicae effector Mp64 increases SIZ1 protein levels in transient assays, P. capsici effector CRN83_152 enhances SIZ1-E3 SUMO ligase activity in vivo. SIZ1 contributes to host susceptibility to aphids and an oomycete pathogen. Knockout of SIZ1 in Arabidopsis decreased susceptibility to aphids, independent of SNC1, PAD4 and EDS1. Similarly SIZ1 knockdown in N. benthamiana led to reduced P. capsici infection. Our results suggest convergence of distinct pathogen and pest virulence strategies on an E3 SUMO ligase to enhance host susceptibility.


Assuntos
Afídeos , Proteínas de Arabidopsis , Arabidopsis , Phytophthora , Animais , Afídeos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Herbivoria , Ligases/metabolismo , Phytophthora/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Virulência
4.
J Exp Bot ; 73(7): 2238-2250, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35090009

RESUMO

Crops are exposed to myriad abiotic and biotic stressors with negative consequences. Two stressors that are expected to increase under climate change are drought and infestation with herbivorous insects, including important aphid species. Expanding our understanding of the impact drought has on the plant-aphid relationship will become increasingly important under future climate scenarios. Here we use a previously characterized plant-aphid system comprising a susceptible variety of barley, a wild relative of barley with partial aphid resistance, and the bird cherry-oat aphid to examine the drought-plant-aphid relationship. We show that drought has a negative effect on plant physiology and aphid fitness, and provide evidence to suggest that plant resistance influences aphid responses to drought stress. Furthermore, we show that the expression of thionin genes, plant defensive compounds that contribute to aphid resistance, increase in susceptible plants exposed to drought stress but remain at constant levels in the partially resistant plant, suggesting that they play an important role in determining the success of aphid populations. This study highlights the role of plant defensive processes in mediating the interactions between the environment, plants, and herbivorous insects.


Assuntos
Afídeos , Hordeum , Animais , Afídeos/fisiologia , Secas , Grão Comestível , Herbivoria , Hordeum/genética , Hordeum/metabolismo
5.
Ecol Evol ; 11(17): 11915-11929, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34522350

RESUMO

Aphids are abundant in natural and managed vegetation, supporting a diverse community of organisms and causing damage to agricultural crops. Due to a changing climate, periods of drought are anticipated to increase, and the potential consequences of this for aphid-plant interactions are unclear.Using a meta-analysis and synthesis approach, we aimed to advance understanding of how increased drought incidence will affect this ecologically and economically important insect group and to characterize any potential underlying mechanisms. We used qualitative and quantitative synthesis techniques to determine whether drought stress has a negative, positive, or null effect on aphid fitness and examined these effects in relation to (a) aphid biology, (b) geographical region, and (c) host plant biology.Across all studies, aphid fitness is typically reduced under drought. Subgroup analysis detected no difference in relation to aphid biology, geographical region, or the aphid-plant combination, indicating the negative effect of drought on aphids is potentially universal. Furthermore, drought stress had a negative impact on plant vigor and increased plant concentrations of defensive chemicals, suggesting the observed response of aphids is associated with reduced plant vigor and increased chemical defense in drought-stressed plants.We propose a conceptual model to predict drought effects on aphid fitness in relation to plant vigor and defense to stimulate further research.

6.
Bull Entomol Res ; 111(1): 31-38, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32539886

RESUMO

Aphids are phloem-feeding insects that cause economic losses to crops globally. Whilst aphid interactions with susceptible plants and partially resistant genotypes have been well characterized, the interactions between aphids and non-host species are not well understood. Unravelling these non-host interactions can identify the mechanisms which contribute to plant resistance. Using contrasting aphid-host plant systems, including the broad host range pest Myzus persicae (host: Arabidopsis; poor-host: barley) and the cereal pest Rhopalosiphum padi (host: barley; non-host: Arabidopsis), we conducted a range of physiological experiments and compared aphid settling and probing behaviour on a host plant vs either a non-host or poor-host. In choice experiments, we observed that around 10% of aphids selected a non-host or poor-host plant species after 24 h. Using the Electrical Penetration Graph technique, we showed that feeding and probing behaviours differ during non-host and poor-host interactions when compared with a host interaction. In the Arabidopsis non-host interaction with the cereal pest R. padi aphids were unable to reach and feed on the phloem, with resistance likely residing in the mesophyll cell layer. In the barley poor-host interaction with M. persicae, resistance is likely phloem-based as phloem ingestion was reduced compared with the host interaction. Overall, our data suggest that plant resistance to aphids in non-host and poor-host interactions with these aphid species likely resides in different plant cell layers. Future work will take into account specific cell layers where resistances are based to dissect the underlying mechanisms and gain a better understanding of how we may improve crop resistance to aphids.


Assuntos
Afídeos/fisiologia , Arabidopsis/fisiologia , Herbivoria , Hordeum/fisiologia , Defesa das Plantas contra Herbivoria , Animais
7.
J Exp Bot ; 71(9): 2796-2807, 2020 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31989174

RESUMO

Aphids secrete diverse repertoires of effectors into their hosts to promote the infestation process. While 'omics' approaches facilitated the identification and comparison of effector repertoires from a number of aphid species, the functional characterization of these proteins has been limited to dicot (model) plants. The bird cherry-oat aphid Rhopalosiphum padi is a pest of cereal crops, including barley. Here, we extend efforts to characterize aphid effectors with regard to their role in promoting susceptibility to the R. padi-barley interaction. We selected three R. padi effectors based on sequence similarity to previously characterized Myzus persicae effectors and assessed their subcellular localization, expression, and role in promoting plant susceptibility. Expression of R. padi effectors RpC002 and Rp1 in transgenic barley lines enhanced plant susceptibility to R. padi but not M. persicae, for which barley is a poor host. Characterization of Rp1 transgenic barley lines revealed reduced gene expression of plant hormone signalling genes relevant to plant-aphid interactions, indicating that this effector enhances susceptibility by suppressing plant defences in barley. Our data suggest that some aphid effectors specifically function when expressed in host species, and feature activities that benefit their corresponding aphid species.


Assuntos
Afídeos , Hordeum , Prunus , Animais , Grão Comestível , Expressão Gênica , Hordeum/genética
8.
Insect Sci ; 27(1): 69-85, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29797656

RESUMO

Bacterial endosymbionts have enabled aphids to adapt to a range of stressors, but their effects in many aphid species remain to be established. The bird cherry-oat aphid, Rhopalosiphum padi (Linnaeus), is an important pest of cereals worldwide and has been reported to form symbiotic associations with Serratia symbiotica and Sitobion miscanthi L-type symbiont endobacteria, although the resulting aphid phenotype has not been described. This study presents the first report of R. padi infection with the facultative bacterial endosymbiont Hamiltonella defensa. Individuals of R. padi were sampled from populations in Eastern Scotland, UK, and shown to represent seven R. padi genotypes based on the size of polymorphic microsatellite markers; two of these genotypes harbored H. defensa. In parasitism assays, survival of H. defensa-infected nymphs following attack by the parasitoid wasp Aphidius colemani (Viereck) was 5 fold higher than for uninfected nymphs. Aphid genotype was a major determinant of aphid performance on two Hordeum species, a modern cultivar of barley H. vulgare and a wild relative H. spontaneum, although aphids infected with H. defensa showed 16% lower nymph mass gain on the partially resistant wild relative compared with uninfected individuals. These findings suggest that deploying resistance traits in barley will favor the fittest R. padi genotypes, but symbiont-infected individuals will be favored when parasitoids are abundant, although these aphids will not achieve optimal performance on a poor quality host plant.


Assuntos
Afídeos/microbiologia , Enterobacteriaceae/fisiologia , Simbiose , Animais , Afídeos/genética , Afídeos/crescimento & desenvolvimento , Genótipo , Ninfa/genética , Ninfa/crescimento & desenvolvimento , Ninfa/microbiologia , Escócia
9.
J Exp Biol ; 223(Pt 1)2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31822555

RESUMO

Many herbivorous arthropods, including aphids, frequently associate with facultative endosymbiotic bacteria, which influence arthropod physiology and fitness. In aphids, endosymbionts can increase resistance against natural enemies, enhance aphid virulence and alter aphid fitness. Here, we used the electrical penetration graph technique to uncover physiological processes at the insect-plant interface affected by endosymbiont infection. We monitored the feeding and probing behaviour of four independent clonal lines of the cereal-feeding aphid Rhopalosiphum padi derived from the same multilocus genotype containing differential infection (+/-) with a common facultative endosymbiont, Hamiltonella defensa Aphid feeding was examined on a partially resistant wild relative of barley known to impair aphid fitness and a susceptible commercial barley cultivar. Compared with uninfected aphids, endosymbiont-infected aphids on both plant species exhibited a twofold increase in the number of plant cell punctures, a 50% reduction in the duration of each cellular puncture and a twofold higher probability of achieving sustained phloem ingestion. Feeding behaviour was also altered by host plant identity: endosymbiont-infected aphids spent less time probing plant tissue, required twice as many probes to reach the phloem and showed a 44% reduction in phloem ingestion when feeding on the wild barley relative compared with the susceptible commercial cultivar. Reduced feeding success could explain the 22% reduction in growth of H. defensa-infected aphids measured on the wild barley relative. This study provides the first demonstration of mechanisms at the aphid-plant interface contributing to physiological effects of endosymbiont infection on aphid fitness, through altered feeding processes on different quality host plants.


Assuntos
Afídeos/fisiologia , Enterobacteriaceae/fisiologia , Aptidão Genética , Simbiose , Animais , Afídeos/genética , Afídeos/crescimento & desenvolvimento , Comportamento Alimentar , Ninfa/genética , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia
10.
J Exp Bot ; 70(15): 4011-4026, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31173098

RESUMO

Aphids, including the bird cherry-oat aphid (Rhopalosiphum padi), are significant agricultural pests. The wild relative of barley, Hordeum spontaneum 5 (Hsp5), has been described to be partially resistant to R. padi, with this resistance proposed to involve higher thionin and lipoxygenase gene expression. However, the specificity of this resistance to aphids and its underlying mechanistic processes are unknown. In this study, we assessed the specificity of Hsp5 resistance to aphids and analysed differences in aphid probing and feeding behaviour on Hsp5 and a susceptible barley cultivar (Concerto). We found that partial resistance in Hsp5 to R. padi extends to two other aphid pests of grasses. Using the electrical penetration graph technique, we show that partial resistance is mediated by phloem- and mesophyll-based resistance factors that limit aphid phloem ingestion. To gain insight into plant traits responsible for partial resistance, we compared non-glandular trichome density, defence gene expression, and phloem composition of Hsp5 with those of the susceptible barley cultivar Concerto. We show that Hsp5 partial resistance involves elevated basal expression of thionin and phytohormone signalling genes, and a reduction in phloem quality. This study highlights plant traits that may contribute to broad-spectrum partial resistance to aphids in barley.


Assuntos
Afídeos/patogenicidade , Hordeum/metabolismo , Hordeum/parasitologia , Células do Mesofilo/metabolismo , Células do Mesofilo/parasitologia , Floema/metabolismo , Floema/parasitologia , Doenças das Plantas/parasitologia , Animais , Regulação da Expressão Gênica de Plantas
11.
Genome Biol Evol ; 10(10): 2716-2733, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30165560

RESUMO

Aphids are a diverse group of taxa that contain agronomically important species, which vary in their host range and ability to infest crop plants. The genome evolution underlying agriculturally important aphid traits is not well understood. We generated draft genome assemblies for two aphid species: Myzus cerasi (black cherry aphid) and the cereal specialist Rhopalosiphum padi. Using a de novo gene prediction pipeline on both these, and three additional aphid genome assemblies (Acyrthosiphon pisum, Diuraphis noxia, and Myzus persicae), we show that aphid genomes consistently encode similar gene numbers. We compare gene content, gene duplication, synteny, and putative effector repertoires between these five species to understand the genome evolution of globally important plant parasites. Aphid genomes show signs of relatively distant gene duplication, and substantial, relatively recent, gene birth. Putative effector repertoires, originating from duplicated and other loci, have an unusual genomic organization and evolutionary history. We identify a highly conserved effector pair that is tightly physically linked in the genomes of all aphid species tested. In R. padi, this effector pair is tightly transcriptionally linked and shares an unknown transcriptional control mechanism with a subset of ∼50 other putative effectors and secretory proteins. This study extends our current knowledge on the evolution of aphid genomes and reveals evidence for an as-of-yet unknown shared control mechanism, which underlies effector expression, and ultimately plant parasitism.


Assuntos
Afídeos/genética , Regulação da Expressão Gênica , Genoma de Inseto , Herbivoria/genética , Animais , Evolução Biológica , Duplicação Gênica , Transferência Genética Horizontal
12.
Plant Physiol ; 173(3): 1892-1903, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28100451

RESUMO

Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to Mpersicae-host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Doenças das Plantas/genética , Proteínas de Transporte Vesicular/genética , Sequência de Aminoácidos , Animais , Afídeos/genética , Afídeos/patogenicidade , Afídeos/fisiologia , Arabidopsis/metabolismo , Arabidopsis/parasitologia , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Parasita , Immunoblotting , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Microscopia Confocal , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiologia , Especificidade da Espécie , Proteínas de Transporte Vesicular/metabolismo , Virulência/genética
13.
BMC Genomics ; 17: 172, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26935069

RESUMO

BACKGROUND: Aphids are phloem-feeding insects that cause significant economic losses to agriculture worldwide. While feeding and probing these insects deliver molecules, called effectors, inside their host to enable infestation. The identification and characterization of these effectors from different species that vary in their host range is an important step in understanding the infestation success of aphids and aphid host range variation. This study employs a multi-disciplinary approach based on transcriptome sequencing and proteomics to identify and compare effector candidates from the broad host range aphid Myzus persicae (green peach aphid) (genotypes O, J and F), and narrow host range aphids Myzus cerasi (black cherry aphid) and Rhopalosiphum padi (bird-cherry oat aphid). RESULTS: Using a combination of aphid transcriptome sequencing on libraries derived from head versus body tissues as well as saliva proteomics we were able to predict candidate effectors repertoires from the different aphid species and genotypes. Among the identified conserved or core effector sets, we identified a significant number of previously identified aphid candidate effectors indicating these proteins may be involved in general infestation strategies. Moreover, we identified aphid candidate effector sequences that were specific to one species, which are interesting candidates for further validation and characterization with regards to species-specific functions during infestation. We assessed our candidate effector repertoires for evidence of positive selection, and identified 49 candidates with DN/DS ratios >1. We noted higher rates of DN/DS ratios in predicted aphid effectors than non-effectors. Whether this reflects positive selection due to co-evolution with host plants, or increased neofunctionalization upon gene duplication remains to be investigated. CONCLUSION: Our work provides a comprehensive overview of the candidate effector repertoires from three different aphid species with varying host ranges. Comparative analyses revealed candidate effectors that are most likely are involved in general aspects of infestation, whereas others, that are highly divergent, may be involved in specific processes important for certain aphid species. Insights into the overlap and differences in aphid effector repertoires are important in understanding how different species successfully infest different ranges of plant species.


Assuntos
Afídeos/genética , Proteoma/genética , Transcriptoma , Sequência de Aminoácidos , Animais , Análise por Conglomerados , Genótipo , Especificidade de Hospedeiro , Proteínas de Insetos/genética , Dados de Sequência Molecular , Saliva/química , Seleção Genética , Análise de Sequência de RNA , Especificidade da Espécie
14.
PLoS One ; 10(9): e0137071, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26348328

RESUMO

Pathogens utilize effectors to suppress basal plant defense known as PTI (Pathogen-associated molecular pattern-triggered immunity). However, our knowledge of PTI suppression by filamentous plant pathogens, i.e. fungi and oomycetes, remains fragmentary. Previous work revealed that the co-receptor BAK1/SERK3 contributes to basal immunity against the potato pathogen Phytophthora infestans. Moreover BAK1/SERK3 is required for the cell death induced by P. infestans elicitin INF1, a protein with characteristics of PAMPs. The P. infestans host-translocated RXLR-WY effector AVR3a is known to supress INF1-mediated cell death by binding the plant E3 ligase CMPG1. In contrast, AVR3aKI-Y147del, a deletion mutant of the C-terminal tyrosine of AVR3a, fails to bind CMPG1 and does not suppress INF1-mediated cell death. Here, we studied the extent to which AVR3a and its variants perturb additional BAK1/SERK3-dependent PTI responses in N. benthamiana using the elicitor/receptor pair flg22/FLS2 as a model. We found that all tested variants of AVR3a suppress defense responses triggered by flg22 and reduce internalization of activated FLS2. Moreover, we discovered that AVR3a associates with the Dynamin-Related Protein 2 (DRP2), a plant GTPase implicated in receptor-mediated endocytosis. Interestingly, silencing of DRP2 impaired ligand-induced FLS2 internalization but did not affect internalization of the growth receptor BRI1. Our results suggest that AVR3a associates with a key cellular trafficking and membrane-remodeling complex involved in immune receptor-mediated endocytosis. We conclude that AVR3a is a multifunctional effector that can suppress BAK1/SERK3-mediated immunity through at least two different pathways.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dinaminas/metabolismo , Phytophthora infestans/genética , Imunidade Vegetal/genética , Proteínas Quinases/genética , Fatores de Virulência/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/imunologia , Morte Celular/genética , Dinaminas/genética , Dinaminas/imunologia , Endocitose/imunologia , Redes e Vias Metabólicas , Moléculas com Motivos Associados a Patógenos/metabolismo , Phytophthora infestans/imunologia , Phytophthora infestans/patogenicidade , Plantas Geneticamente Modificadas , Proteínas Quinases/imunologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas/metabolismo , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/microbiologia , Ubiquitina-Proteína Ligases/metabolismo , Fatores de Virulência/imunologia
15.
PLoS Pathog ; 11(5): e1004918, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25993686

RESUMO

Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants.


Assuntos
Afídeos/fisiologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Parasita , Animais , Afídeos/crescimento & desenvolvimento , Afídeos/imunologia , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/parasitologia , Proteínas de Arabidopsis/genética , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Cinética , Mutação , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Ninfa/crescimento & desenvolvimento , Imunidade Vegetal , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/parasitologia , Espécies Reativas de Oxigênio/metabolismo , Reprodução , Especificidade da Espécie
16.
Front Plant Sci ; 5: 663, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25520727

RESUMO

Aphids are economically important pests that cause extensive feeding damage and transmit viruses. While some species have a broad host range and cause damage to a variety of crops, others are restricted to only closely related plant species. While probing and feeding aphids secrete saliva, containing effectors, into their hosts to manipulate host cell processes and promote infestation. Aphid effector discovery studies pointed out parallels between infection and infestation strategies of plant pathogens and aphids. Interestingly, resistance to some aphid species is known to involve plant resistance proteins with a typical NB-LRR domain structure. Whether these resistance proteins indeed recognize aphid effectors to trigger ETI remains to be elucidated. In addition, it was recently shown that unknown aphid derived elicitors can initiate reactive oxygen species (ROS) production and callose deposition and that these responses were dependent on BAK1 (BRASSINOSTERIOD INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1) which is a key component of the plant immune system. In addition, BAK-1 contributes to non-host resistance to aphids pointing to another parallel between plant-pathogen and - aphid interactions. Understanding the role of plant immunity and non-host resistance to aphids is essential to generate durable and sustainable aphid control strategies. Although insect behavior plays a role in host selection and non-host resistance, an important observation is that aphids interact with non-host plants by probing the leaf surface, but are unable to feed or establish colonization. Therefore, we hypothesize that aphids interact with non-host plants at the molecular level, but are potentially not successful in suppressing plant defenses and/or releasing nutrients.

17.
Mol Plant Microbe Interact ; 27(7): 624-37, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24678835

RESUMO

Both plants and animals rely on nucleotide-binding domain and leucine-rich repeat-containing (NB-LRR or NLR) proteins to respond to invading pathogens and activate immune responses. How plant NB-LRR proteins respond to pathogens is poorly understood. We undertook a gain-of-function random mutagenesis screen of the potato NB-LRR immune receptor R3a to study how this protein responds to the effector protein AVR3a from the oomycete pathogen Phytophthora infestans. R3a response can be extended to the stealthy AVR3aEM isoform of the effector while retaining recognition of AVR3aKI. Each one of eight single amino acid mutations is sufficient to expand the R3a response to AVR3aEM and other AVR3a variants. These mutations occur across the R3a protein, from the N terminus to different regions of the LRR domain. Further characterization of these R3a mutants revealed that at least one of them was sensitized, exhibiting a stronger response than the wild-type R3a protein to AVR3aKI. Remarkably, the N336Y mutation, near the R3a nucleotide-binding pocket, conferred response to the effector protein PcAVR3a4 from the vegetable pathogen P. capsici. This work contributes to understanding how NB-LRR receptor specificity can be modulated. Together with knowledge of pathogen effector diversity, this strategy can be exploited to develop synthetic immune receptors.


Assuntos
Phytophthora/fisiologia , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Regulação da Expressão Gênica de Plantas/imunologia , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/genética , Solanum tuberosum/imunologia , Solanum tuberosum/microbiologia
18.
Mol Plant Microbe Interact ; 27(8): 770-80, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24725207

RESUMO

Nonhost resistance is a commonly occurring phenomenon wherein all accessions or cultivars of a plant species are resistant to all strains of a pathogen species and is likely the manifestation of multiple molecular mechanisms. Phytophthora capsici is a soil-borne oomycete that causes Phytophthora blight disease in many solanaceous and cucurbitaceous plants worldwide. Interest in P. capsici has increased considerably with the sequencing of its genome and its increasing occurrence in multiple crops. However, molecular interactions between P. capsici and both its hosts and its nonhosts are poorly defined. We show here that tobacco (Nicotiana tabacum) acts like a nonhost for P. capsici and responds to P. capsici infection with a hypersensitive response (HR). Furthermore, we have found that a P. capsici Avr3a-like gene (PcAvr3a1) encoding a putative RXLR effector protein produces a HR upon transient expression in tobacco and several other Nicotiana species. This HR response correlated with resistance in 19 of 23 Nicotiana species and accessions tested, and knock-down of PcAvr3a1 expression by host-induced gene silencing allowed infection of resistant tobacco. Our results suggest that many Nicotiana species have the capacity to recognize PcAvr3a1 via the products of endogenous disease resistance (R) genes and that this R gene-mediated response is a major component of nonhost resistance to P. capsici.


Assuntos
Resistência à Doença , Nicotiana/imunologia , Phytophthora/patogenicidade , Doenças das Plantas/imunologia , Fatores de Virulência/genética , Sequência de Aminoácidos , Técnicas de Silenciamento de Genes , Inativação Gênica , Genes Dominantes , Dados de Sequência Molecular , Phytophthora/genética , Phytophthora/fisiologia , Doenças das Plantas/parasitologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/parasitologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Nicotiana/genética , Nicotiana/parasitologia , Fatores de Virulência/metabolismo
19.
Methods Mol Biol ; 1127: 137-43, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24643558

RESUMO

Aphids, like plant pathogens, are known to form close associations with their host. While probing and feeding, these insects deliver effectors inside the host, which are thought to be involved in suppression of host defenses and/or the release of nutrients. With increasing availability of aphid genome and transcriptome sequencing data, effectors can now be identified using bioinformatics- and proteomics-based approaches. The next step is then to apply functional assays relevant to plant-aphid interactions to identify effector activities. This chapter describes an effective and medium-throughput screen for the identification of effectors that affect aphid fecundity upon in planta over-expression. This assay will allow the identification of aphid effectors with a role in aphid virulence and can be adapted to other plant species amenable to agroinfiltration as well as to other assays based on transient expression, such as RNAi.


Assuntos
Afídeos/fisiologia , Bioensaio/métodos , Proteínas de Insetos/metabolismo , Nicotiana/parasitologia , Folhas de Planta/metabolismo , Agrobacterium/metabolismo , Animais , Afídeos/patogenicidade , Virulência
20.
Mol Plant Microbe Interact ; 27(1): 30-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24006884

RESUMO

Aphids are phloem-feeding insects that, like other plant parasites, deliver effectors inside their host to manipulate host responses. The Myzus persicae (green peach aphid) candidate effectors Mp10 and Mp42 were previously found to reduce aphid fecundity upon intracellular transient overexpression in Nicotiana benthamiana. We performed functional analyses of these proteins to investigate whether they activate defenses through similar activities. We employed a range of functional characterization experiments based on intracellular transient overexpression in N. benthamiana to determine the subcellular localization of Mp10 and Mp42 and investigate their role in activating plant defense signaling. Mp10 and Mp42 showed distinct subcellular localization in planta, suggesting that they target different host compartments. Also, Mp10 reduced the levels of Agrobacterium-mediated overexpression of proteins. This reduction was not due to an effect on Agrobacterium viability. Transient overexpression of Mp10 but not Mp42 activated jasmonic acid and salicylic acid signaling pathways and decreased susceptibility to the hemibiotrophic plant pathogen Phytophthora capsici. We found that two candidate effectors from the broad-host-range aphid M. persicae can trigger aphid defenses through different mechanisms. Importantly, we found that some (candidate) effectors such as Mp10 interfere with Agrobacterium-based overexpression assays, an important tool to study effector activity and function.


Assuntos
Afídeos/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Insetos/genética , Nicotiana/parasitologia , Doenças das Plantas/parasitologia , Imunidade Vegetal , Agrobacterium/fisiologia , Animais , Afídeos/fisiologia , Marcadores Genéticos/genética , Interações Hospedeiro-Parasita , Proteínas de Insetos/metabolismo , Microscopia Confocal , Doenças das Plantas/imunologia , Folhas de Planta/citologia , Folhas de Planta/imunologia , Folhas de Planta/parasitologia , Folhas de Planta/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes de Fusão , Nicotiana/citologia , Nicotiana/imunologia , Nicotiana/fisiologia , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA