Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Today Bio ; 12: 100137, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34632362

RESUMO

Biomimetic calcium-deficient hydroxyapatite (CDHA) as a bioactive material exhibits exceptional intrinsic osteoinductive and osteogenic properties because of its nanostructure and composition, which promote a favorable microenvironment. Its high reactivity has been hypothesized to play a relevant role in the in vivo performance, mediated by the interaction with the biological fluids, which is amplified by its high specific surface area. Paradoxically, this high reactivity is also behind the in vitro cytotoxicity of this material, especially pronounced in static conditions. The present work explores the structural and physicochemical changes that CDHA undergoes in contact with physiological fluids and to investigate its interaction with proteins. Calcium-deficient hydroxyapatite discs with different micro/nanostructures, coarse (C) and fine (F), were exposed to cell-free complete culture medium over extended periods of time: 1, 7, 14, 21, 28, and 50 days. Precipitate formation was not observed in any of the materials in contact with the physiological fluid, which would indicate that the ionic exchanges were linked to incorporation into the crystal structure of CDHA or in the hydrated layer. In fact, CDHA experienced a maturation process, with a progressive increase in crystallinity and the Ca/P ratio, accompanied by an uptake of Mg and a B-type carbonation process, with a gradual propagation into the core of the samples. However, the reactivity of biomimetic hydroxyapatite was highly dependent on the specific surface area and was amplified in nanosized needle-like crystal structures (F), whereas in coarse specimens the ionic exchanges were restricted to the surface, with low penetration in the material bulk. In addition to showing a higher protein adsorption on F substrates, the proteomics study revealed the existence of protein selectivity toward F or C microstructures, as well as the capability of CDHA, and more remarkably of F-CDHA, to concentrate specific proteins from the culture medium. Finally, a substantial improvement in the material's ability to support cell proliferation was observed after the CDHA maturation process.

2.
Biomater Sci ; 7(4): 1281-1285, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30735211

RESUMO

In this communication we report that anchoring αvß3 or α5ß1 integrin-selective RGD peptidomimetics to titanium efficiently tunes mesenchymal stem cell response in vitro and bone growth in rat calvarial defects. Our results demonstrate that this molecular chemistry-derived approach could be successful to engineer instructive coatings for orthopedic applications.


Assuntos
Materiais Biocompatíveis/farmacologia , Osso e Ossos/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Oligopeptídeos/farmacologia , Peptidomiméticos/farmacologia , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Regeneração Óssea/efeitos dos fármacos , Integrina alfa5beta1/química , Integrina alfaVbeta3/química , Ligantes , Estrutura Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/química , Peptidomiméticos/química , Ratos , Titânio/química , Titânio/farmacologia , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...