Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569007

RESUMO

The ability to independently control gene expression in two different tissues in the same animal is emerging as a major need, especially in the context of inter-organ communication studies. This type of study is made possible by technologies combining the GAL4/UAS and a second binary expression system such as the LexA system or QF system. Here, we describe a resource of reagents that facilitate combined use of the GAL4/UAS and a second binary system in various Drosophila tissues. Focusing on genes with well-characterized GAL4 expression patterns, we generated a set of more than 40 LexA-GAD and QF2 insertions by CRISPR knock-in and verified their tissue specificity in larvae. We also built constructs that encode QF2 and LexA-GAD transcription factors in a single vector. Following successful integration of this construct into the fly genome, FLP/FRT recombination is used to isolate fly lines that express only QF2 or LexA-GAD. Finally, using new compatible shRNA vectors, we evaluated both LexA and QF systems for in vivo gene knockdown and are generating a library of such RNAi fly lines as a community resource. Together, these LexA and QF system vectors and fly lines will provide a new set of tools for researchers who need to activate or repress two different genes in an orthogonal manner in the same animal.


In order for researchers to understand how organisms develop and function, they often switch specific genes on or off in certain tissues or at selected times. This can be achieved using genetic tools called binary expression systems. In the fruit fly ­ a popular organism for studying biological processes ­ the most common is the GAL4/UAS system. In this system, a protein called GAL4 is expressed in a specific organ or tissue where it activates a UAS element ­ a genetic sequence that is inserted in front of the gene that is to be switched on. This can also include genes inserted into the fruit fly encoding fluorescent proteins or stretches of DNA coding for factors that can silence specific genes. For example, fruit flies expressing GAL4 protein specifically in nerve cells and a UAS element in front of a gene for a fluorescent protein will display fluorescent nerve cells, which can then be examined using fluorescence microscopy. Studying how organs communicate with one other can require controlled expression of multiple genes at the same time. In fruit flies, other binary expression systems that are analogous to the GAL4/UAS system (known as LexA/LexAop and QF/QUAS) can be used in tandem. For example, to study gut-brain communication, the GAL4/UAS system might be used to switch on the gene for an insulin-like protein in the gut, with one of the other systems controlling the expression of its corresponding receptor in the brain. However, these experiments are currently difficult because, while there are thousands of GAL4/UAS genetic lines, there are only a few LexA/LexAop and QF/QUAS genetic lines. To address this lack of resources, Zirin et al. produced a range of genetically engineered fruit flies containing the LexA/LexAop and QF/QUAS binary expression systems. The flies expressed LexA or QF in each of the major fly organs, including the brain, heart, muscles, and gut. A fluorescent reporter gene linked to the LexAop or QUAS elements, respectively, was then used to test the specificity to single organs and compare the different systems. In some organs the LexA/LexAop system was more reliable than the QF/QUAS system. However, both systems could be successfully combined with genetic elements to switch on a fluorescent reporter gene or switch off a gene of interest in the intended organ. The resources developed by Zirin et al. expand the toolkit for studying fruit fly biology. In future, it will be important to understand the differences between GAL4, LexA and QF systems, and to increase the number of fruit fly lines containing the newer binary expression systems.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Expressão Gênica , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Animais Geneticamente Modificados/metabolismo
2.
Cell Genom ; 4(3): 100519, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38484704

RESUMO

The diversity of CRISPR systems, coupled with scientific ingenuity, has led to an explosion of applications; however, to test newly described innovations in their model systems, researchers typically embark on cumbersome, one-off cloning projects to generate custom reagents that are optimized for their biological questions. Here, we leverage Golden Gate cloning to create the Fragmid toolkit, a modular set of CRISPR cassettes and delivery technologies, along with a web portal, resulting in a combinatorial platform that enables scalable vector assembly within days. We further demonstrate that multiple CRISPR technologies can be assessed in parallel in a pooled screening format using this resource, enabling the rapid optimization of both novel technologies and cellular models. These results establish Fragmid as a robust system for the rapid design of CRISPR vectors, and we anticipate that this assembly approach will be broadly useful for systematic development, comparison, and dissemination of CRISPR technologies.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Vetores Genéticos/genética
4.
bioRxiv ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-37645802

RESUMO

The ability to independently control gene expression in two different tissues in the same animal is emerging as a major need, especially in the context of inter-organ communication studies. This type of study is made possible by technologies combining the GAL4/UAS and a second binary expression system such as the LexA-system or QF-system. Here, we describe a resource of reagents that facilitate combined use of the GAL4/UAS and a second binary system in various Drosophila tissues. Focusing on genes with well-characterizsed GAL4 expression patterns, we generated a set of more than 40 LexA-GAD and QF2 insertions by CRISPR knock-in and verified their tissue-specificity in larvae. We also built constructs that encode QF2 and LexA-GAD transcription factors in a single vector. Following successful integration of this construct into the fly genome, FLP/FRT recombination is used to isolate fly lines that express only QF2 or LexA-GAD. Finally, using new compatible shRNA vectors, we evaluated both LexA and QF systems for in vivo gene knockdown and are generating a library of such RNAi fly lines as a community resource. Together, these LexA and QF system vectors and fly lines will provide a new set of tools for researchers who need to activate or repress two different genes in an orthogonal manner in the same animal.

5.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961518

RESUMO

The diversity of CRISPR systems, coupled with scientific ingenuity, has led to an explosion of applications; however, to test newly-described innovations in their model systems, researchers typically embark on cumbersome, one-off cloning projects to generate custom reagents that are optimized for their biological questions. Here, we leverage Golden Gate cloning to create the Fragmid toolkit, a modular set of CRISPR cassettes and delivery technologies, along with a web portal, resulting in a combinatorial platform that enables scalable vector assembly within days. We further demonstrate that multiple CRISPR technologies can be assessed in parallel in a pooled screening format using this resource, enabling the rapid optimization of both novel technologies and cellular models. These results establish Fragmid as a robust system for the rapid design of CRISPR vectors, and we anticipate that this assembly approach will be broadly useful for systematic development, comparison, and dissemination of CRISPR technologies.

6.
Cell Rep ; 42(11): 113311, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37889754

RESUMO

Short polypeptides encoded by small open reading frames (smORFs) are ubiquitously found in eukaryotic genomes and are important regulators of physiology, development, and mitochondrial processes. Here, we focus on a subset of 298 smORFs that are evolutionarily conserved between Drosophila melanogaster and humans. Many of these smORFs are conserved broadly in the bilaterian lineage, and ∼182 are conserved in plants. We observe remarkably heterogeneous spatial and temporal expression patterns of smORF transcripts-indicating wide-spread tissue-specific and stage-specific mitochondrial architectures. In addition, an analysis of annotated functional domains reveals a predicted enrichment of smORF polypeptides localizing to mitochondria. We conduct an embryonic ribosome profiling experiment and find support for translation of 137 of these smORFs during embryogenesis. We further embark on functional characterization using CRISPR knockout/activation, RNAi knockdown, and cDNA overexpression, revealing diverse phenotypes. This study underscores the importance of identifying smORF function in disease and phenotypic diversity.


Assuntos
Drosophila melanogaster , Peptídeos , Animais , Humanos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Peptídeos/metabolismo , Genoma , Fases de Leitura Aberta/genética
7.
Elife ; 112022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36346220

RESUMO

Naturally produced peptides (<100 amino acids) are important regulators of physiology, development, and metabolism. Recent studies have predicted that thousands of peptides may be translated from transcripts containing small open-reading frames (smORFs). Here, we describe two peptides in Drosophila encoded by conserved smORFs, Sloth1 and Sloth2. These peptides are translated from the same bicistronic transcript and share sequence similarities, suggesting that they encode paralogs. Yet, Sloth1 and Sloth2 are not functionally redundant, and loss of either peptide causes animal lethality, reduced neuronal function, impaired mitochondrial function, and neurodegeneration. We provide evidence that Sloth1/2 are highly expressed in neurons, imported to mitochondria, and regulate mitochondrial complex III assembly. These results suggest that phenotypic analysis of smORF genes in Drosophila can provide a wealth of information on the biological functions of this poorly characterized class of genes.


Assuntos
Drosophila , Complexo III da Cadeia de Transporte de Elétrons , Animais , Drosophila/genética , Complexo III da Cadeia de Transporte de Elétrons/genética , Fases de Leitura Aberta , Peptídeos/genética , Peptídeos/química , Neurônios
8.
Methods Mol Biol ; 2540: 113-134, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35980575

RESUMO

Editing the Drosophila genome is incredibly useful for gene functional analysis. However, compared to gene knockouts, precise gene editing is difficult to achieve. Prime editing, a recently described CRISPR/Cas9-based technique, has the potential to make precise editing simpler and faster, and produce less errors than traditional methods. Initially described in mammalian cells, prime editing is functional in Drosophila somatic and germ cells. Here, we outline steps to design, generate, and express prime editing components in transgenic flies. Furthermore, we highlight a crossing scheme to produce edited fly stocks in less than 3 months.


Assuntos
Sistemas CRISPR-Cas , Drosophila , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas/genética , Drosophila/genética , Edição de Genes/métodos , Genoma de Inseto , Mamíferos/genética
9.
Trends Genet ; 38(5): 437-453, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34933779

RESUMO

For more than 100 years, the fruit fly, Drosophila melanogaster, has served as a powerful model organism for biological and biomedical research due to its many genetic and physiological similarities to humans and the availability of sophisticated technologies used to manipulate its genome and genes. The Drosophila research community quickly adopted CRISPR technologies and, in the 8 years since the first clustered regularly interspaced short palindromic repeats (CRISPR) publications in flies, has explored and innovated methods for mutagenesis, precise genome engineering, and beyond. Moreover, the short lifespan and ease of genetics have made Drosophila an ideal testing ground for in vivo applications and refinements of the rapidly evolving set of CRISPR-associated (CRISPR-Cas) tools. Here, we review innovations in delivery of CRISPR reagents, increased efficiency of cutting and homology-directed repair (HDR), and alternatives to standard Cas9-based approaches. While the focus is primarily on in vivo systems, we also describe the role of Drosophila cultured cells as both an indispensable first step in the process of assessing new CRISPR technologies and a platform for genome-wide CRISPR pooled screens.


Assuntos
Sistemas CRISPR-Cas , Drosophila , Animais , Sistemas CRISPR-Cas/genética , Drosophila/genética , Drosophila melanogaster/genética , Edição de Genes/métodos , Mutagênese , Reparo de DNA por Recombinação
10.
Nat Commun ; 12(1): 2382, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888706

RESUMO

Conventional approaches to identify secreted factors that regulate homeostasis are limited in their abilities to identify the tissues/cells of origin and destination. We established a platform to identify secreted protein trafficking between organs using an engineered biotin ligase (BirA*G3) that biotinylates, promiscuously, proteins in a subcellular compartment of one tissue. Subsequently, biotinylated proteins are affinity-enriched and identified from distal organs using quantitative mass spectrometry. Applying this approach in Drosophila, we identify 51 muscle-secreted proteins from heads and 269 fat body-secreted proteins from legs/muscles, including CG2145 (human ortholog ENDOU) that binds directly to muscles and promotes activity. In addition, in mice, we identify 291 serum proteins secreted from conditional BirA*G3 embryo stem cell-derived teratomas, including low-abundance proteins with hormonal properties. Our findings indicate that the communication network of secreted proteins is vast. This approach has broad potential across different model systems to identify cell-specific secretomes and mediators of interorgan communication in health or disease.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteômica/métodos , Proteínas Repressoras/metabolismo , Coloração e Rotulagem/métodos , Animais , Animais Geneticamente Modificados , Biotina/metabolismo , Biotinilação , Carbono-Nitrogênio Ligases/genética , Linhagem Celular , Modelos Animais de Doenças , Drosophila , Células-Tronco Embrionárias , Proteínas de Escherichia coli/genética , Feminino , Humanos , Masculino , Camundongos , Engenharia de Proteínas , Transporte Proteico , Proteínas Repressoras/genética , Espectrometria de Massas em Tandem/métodos , Teratoma/diagnóstico , Teratoma/patologia
11.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443210

RESUMO

Precise genome editing is a valuable tool to study gene function in model organisms. Prime editing, a precise editing system developed in mammalian cells, does not require double-strand breaks or donor DNA and has low off-target effects. Here, we applied prime editing for the model organism Drosophila melanogaster and developed conditions for optimal editing. By expressing prime editing components in cultured cells or somatic cells of transgenic flies, we precisely introduce premature stop codons in three classical visible marker genes, ebony, white, and forked Furthermore, by restricting editing to germ cells, we demonstrate efficient germ-line transmission of a precise edit in ebony to 36% of progeny. Our results suggest that prime editing is a useful system in Drosophila to study gene function, such as engineering precise point mutations, deletions, or epitope tags.


Assuntos
Sistemas CRISPR-Cas , Drosophila melanogaster/genética , Edição de Genes/métodos , Marcação de Genes/métodos , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Animais Geneticamente Modificados , Linhagem Celular , Células Cultivadas , Códon de Terminação , Cruzamentos Genéticos , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Proteínas do Olho/genética , Feminino , Genoma , Células Germinativas , Masculino , Proteínas dos Microfilamentos/genética , Recombinação Genética
12.
Wiley Interdiscip Rev Dev Biol ; 10(1): e392, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32909689

RESUMO

Characterizing the proteome composition of organelles and subcellular regions of living cells can facilitate the understanding of cellular organization as well as protein interactome networks. Proximity labeling-based methods coupled with mass spectrometry (MS) offer a high-throughput approach for systematic analysis of spatially restricted proteomes. Proximity labeling utilizes enzymes that generate reactive radicals to covalently tag neighboring proteins. The tagged endogenous proteins can then be isolated for further analysis by MS. To analyze protein-protein interactions or identify components that localize to discrete subcellular compartments, spatial expression is achieved by fusing the enzyme to specific proteins or signal peptides that target to particular subcellular regions. Although these technologies have only been introduced recently, they have already provided deep insights into a wide range of biological processes. Here, we provide an updated description and comparison of proximity labeling methods, as well as their applications and improvements. As each method has its own unique features, the goal of this review is to describe how different proximity labeling methods can be used to answer different biological questions. This article is categorized under: Technologies > Analysis of Proteins.


Assuntos
Domínios e Motivos de Interação entre Proteínas , Proteínas/química , Proteínas/metabolismo , Proteoma/metabolismo , Coloração e Rotulagem/métodos , Animais , Humanos , Proteoma/análise
13.
Nat Biotechnol ; 38(1): 108, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31748691

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Proc Natl Acad Sci U S A ; 117(1): 464-471, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31852821

RESUMO

Metabolites are increasingly appreciated for their roles as signaling molecules. To dissect the roles of metabolites, it is essential to understand their signaling pathways and their enzymatic regulations. From an RNA interference (RNAi) screen for regulators of intestinal stem cell (ISC) activity in the Drosophila midgut, we identified adenosine receptor (AdoR) as a top candidate gene required for ISC proliferation. We demonstrate that Ras/MAPK and Protein Kinase A (PKA) signaling act downstream of AdoR and that Ras/MAPK mediates the major effect of AdoR on ISC proliferation. Extracellular adenosine, the ligand for AdoR, is a small metabolite that can be released by various cell types and degraded in the extracellular space by secreted adenosine deaminase. Interestingly, down-regulation of adenosine deaminase-related growth factor A (Adgf-A) from enterocytes is necessary for extracellular adenosine to activate AdoR and induce ISC overproliferation. As Adgf-A expression and its enzymatic activity decrease following tissue damage, our study provides important insights into how the enzymatic regulation of extracellular adenosine levels under tissue-damage conditions facilitates ISC proliferation.


Assuntos
Adenosina Desaminase/metabolismo , Proteínas de Drosophila/metabolismo , Enterócitos/fisiologia , Células-Tronco Multipotentes/fisiologia , Receptores Purinérgicos P1/metabolismo , Adenosina/metabolismo , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Proliferação de Células , Regulação para Baixo , Drosophila , Proteínas de Drosophila/genética , Técnicas de Introdução de Genes , Técnicas de Silenciamento de Genes , Sistema de Sinalização das MAP Quinases/genética , Interferência de RNA , Receptores Purinérgicos P1/genética
15.
Curr Protoc Mol Biol ; 130(1): e112, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31869524

RESUMO

The CRISPR-Cas9 system makes it possible to cause double-strand breaks in specific regions, inducing repair. In the presence of a donor construct, repair can involve insertion or 'knock-in' of an exogenous cassette. One common application of knock-in technology is to generate cell lines expressing fluorescently tagged endogenous proteins. The standard approach relies on production of a donor plasmid with ∼500 to 1000 bp of homology on either side of an insertion cassette that contains the fluorescent protein open reading frame (ORF). We present two alternative methods for knock-in of fluorescent protein ORFs into Cas9-expressing Drosophila S2R+ cultured cells, the single-stranded DNA (ssDNA) Drop-In method and the CRISPaint universal donor method. Both methods eliminate the need to clone a large plasmid donor for each target. We discuss the advantages and limitations of the standard, ssDNA Drop-In, and CRISPaint methods for fluorescent protein tagging in Drosophila cultured cells. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Knock-in into Cas9-positive S2R+ cells using the ssDNA Drop-In approach Basic Protocol 2: Knock-in into Cas9-positive S2R+ cells by homology-independent insertion of universal donor plasmids that provide mNeonGreen (CRISPaint method) Support Protocol 1: sgRNA design and cloning Support Protocol 2: ssDNA donor synthesis Support Protocol 3: Transfection using Effectene Support Protocol 4: Electroporation of S2R+-MT::Cas9 Drosophila cells Support Protocol 5: Single-cell isolation of fluorescent cells using FACS.


Assuntos
Sistemas CRISPR-Cas , Drosophila/citologia , Drosophila/genética , Técnicas de Introdução de Genes/métodos , Genes de Insetos , Proteínas de Fluorescência Verde/genética , Fases de Leitura Aberta , Animais , Células Cultivadas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA de Cadeia Simples/genética , Edição de Genes/métodos , Plasmídeos/genética , RNA Guia de Cinetoplastídeos/genética , Transfecção
16.
Genetics ; 214(1): 75-89, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31685521

RESUMO

Targeted genomic knock-ins are a valuable tool to probe gene function. However, knock-in methods involving homology-directed repair (HDR) can be laborious. Here, we adapt the mammalian CRISPaint [clustered regularly interspaced short palindromic repeat (CRISPR)-assisted insertion tagging] homology-independent knock-in method for Drosophila melanogaster, which uses CRISPR/Cas9 and nonhomologous end joining to insert "universal" donor plasmids into the genome. Using this method in cultured S2R+ cells, we efficiently tagged four endogenous proteins with the bright fluorescent protein mNeonGreen, thereby demonstrating that an existing collection of CRISPaint universal donor plasmids is compatible with insect cells. In addition, we inserted the transgenesis marker 3xP3-red fluorescent protein into seven genes in the fly germ line, producing heritable loss-of-function alleles that were isolated by simple fluorescence screening. Unlike in cultured cells, insertions/deletions always occurred at the genomic insertion site, which prevents predictably matching the insert coding frame to the target gene. Despite this effect, we were able to isolate T2A-Gal4 insertions in four genes that serve as in vivo expression reporters. Therefore, homology-independent insertion in Drosophila is a fast and simple alternative to HDR that will enable researchers to dissect gene function.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Técnicas de Introdução de Genes/métodos , Sequência de Aminoácidos , Animais , Sequência de Bases , Sistemas CRISPR-Cas , Drosophila melanogaster/embriologia , Embrião não Mamífero , Genoma , Masculino , Mutagênese Insercional , Plasmídeos/genética
17.
Nat Biotechnol ; 36(9): 880-887, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30125270

RESUMO

Protein interaction networks and protein compartmentalization underlie all signaling and regulatory processes in cells. Enzyme-catalyzed proximity labeling (PL) has emerged as a new approach to study the spatial and interaction characteristics of proteins in living cells. However, current PL methods require over 18 h of labeling time or utilize chemicals with limited cell permeability or high toxicity. We used yeast display-based directed evolution to engineer two promiscuous mutants of biotin ligase, TurboID and miniTurbo, which catalyze PL with much greater efficiency than BioID or BioID2, and enable 10-min PL in cells with non-toxic and easily deliverable biotin. Furthermore, TurboID extends biotin-based PL to flies and worms.


Assuntos
Mapeamento de Interação de Proteínas , Catálise , Enzimas/metabolismo , Mutação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Genetics ; 203(1): 109-18, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26984059

RESUMO

RNA interference (RNAi) has emerged as a powerful way of reducing gene function in Drosophila melanogaster tissues. By expressing synthetic short hairpin RNAs (shRNAs) using the Gal4/UAS system, knockdown is efficiently achieved in specific tissues or in clones of marked cells. Here we show that knockdown by shRNAs is so potent and persistent that even transient exposure of cells to shRNAs can reduce gene function in their descendants. When using the FLP-out Gal4 method, in some instances we observed unmarked "shadow RNAi" clones adjacent to Gal4-expressing clones, which may have resulted from brief Gal4 expression following recombination but prior to cell division. Similarly, Gal4 driver lines with dynamic expression patterns can generate shadow RNAi cells after their activity has ceased in those cells. Importantly, these effects can lead to erroneous conclusions regarding the cell autonomy of knockdown phenotypes. We have investigated the basis of this phenomenon and suggested experimental designs for eliminating ambiguities in interpretation. We have also exploited the persistence of shRNA-mediated knockdown to design a sensitive lineage-tracing method, i-TRACE, which is capable of detecting even low levels of past reporter expression. Using i-TRACE, we demonstrate transient infidelities in the expression of some cell-identity markers near compartment boundaries in the wing imaginal disc.


Assuntos
Drosophila/genética , Inativação Gênica , Ligação Genética , Mosaicismo , Interferência de RNA , Animais , Animais Geneticamente Modificados , Biomarcadores , Expressão Gênica , Técnicas de Silenciamento de Genes , Fenótipo , RNA Interferente Pequeno/genética
19.
Development ; 142(3): 597-606, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25605786

RESUMO

Screens in mosaic Drosophila tissues that use chemical mutagenesis have identified many regulators of growth and patterning. Many of the mutant phenotypes observed were contingent upon the presence of both wild-type and mutant cells in the same tissue. More recently, large collections of RNAi lines or cDNAs expressed under Gal4/UAS control have been used to alter gene expression uniformly in specific tissues. However, these newer approaches are not easily combined with the efficient generation of genetic mosaics. The CoinFLP system described here enables mosaic screens in the context of gene knockdown or overexpression by automatically generating a reliable ratio of mutant to wild-type tissue in a developmentally controlled manner. CoinFLP-Gal4 generates mosaic tissues composed of clones of which only a subset expresses Gal4. CoinFLP-LexGAD/Gal4 generates tissues composed of clones that express either Gal4 or LexGAD, thus allowing the study of interactions between different types of genetically manipulated cells. By combining CoinFLP-LexGAD/Gal4 with the split-GFP system GRASP, boundaries between genetically distinct cell populations can be visualized at high resolution.


Assuntos
Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Ensaios de Triagem em Larga Escala/métodos , Mosaicismo , Animais , Cruzamentos Genéticos , Proteínas de Drosophila/metabolismo , Olho/anatomia & histologia , Técnicas de Introdução de Genes , Técnicas de Silenciamento de Genes , Processamento de Imagem Assistida por Computador , Discos Imaginais/anatomia & histologia , Imuno-Histoquímica , Microscopia Confocal , Fatores de Transcrição/metabolismo , Asas de Animais/anatomia & histologia
20.
Elife ; 3: e03383, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25107277

RESUMO

The Drosophila protocadherin Fat (Ft) regulates growth, planar cell polarity (PCP) and proximodistal patterning. A key downstream component of Ft signaling is the atypical myosin Dachs (D). Multiple regions of the intracellular domain of Ft have been implicated in regulating growth and PCP but how Ft regulates D is not known. Mutations in Fbxl7, which encodes an F-box protein, result in tissue overgrowth and abnormalities in proximodistal patterning that phenocopy deleting a specific portion of the intracellular domain (ICD) of Ft that regulates both growth and PCP. Fbxl7 binds to this same portion of the Ft ICD, co-localizes with Ft to the proximal edge of cells and regulates the levels and asymmetry of D at the apical membrane. Fbxl7 can also regulate the trafficking of proteins between the apical membrane and intracellular vesicles. Thus Fbxl7 functions in a subset of pathways downstream of Ft and links Ft to D localization.


Assuntos
Moléculas de Adesão Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas F-Box/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Miosinas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Sítios de Ligação , Padronização Corporal/genética , Moléculas de Adesão Celular/genética , Polaridade Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas F-Box/genética , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Miosinas/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Transporte Proteico , Transdução de Sinais , Vesículas Transportadoras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...