RESUMO
The cacao fruit is a rich source of polyphenols, including flavonoids and phenolic acids, which possess significant health benefits. The accurate identification and quantification of these bioactive compounds extracted from different parts of the cacao fruit, such as pods, beans, nibs, and cacao shells, require specific treatment conditions and analytical techniques. This review presents a comprehensive comparison of extraction processes and analytical techniques used to identify and quantify polyphenols from various parts of the cacao fruit. Additionally, it highlights the environmental impact of these methods, exploring the challenges and opportunities in selecting and utilizing extraction, analytical, and impact assessment techniques, while considering polyphenols' yield. The review aims to provide a thorough overview of the current knowledge that can guide future decisions for those seeking to obtain polyphenols from different parts of the cacao fruit.
RESUMO
A method for the simultaneous determination of three commonly used coccidiostats in chicken liver was developed, comprising a multi-residue QuEChERS (quick, easy, cheap, effective, rugged and safe) extraction step, and a liquid chromatography-ultra violet-fluorescence (HPLC-UV/FL) analysis. The QuEChERS extraction was optimized using an experimental design approach that includes a screening step to obtain the critical variables, an optimization step using multiple response surface analysis and the calculation of a desirability parameter. The optimized method was validated with fortified samples, reaching an average recovery of 91% and an overall precision of 5.5% (mean of three analytes at three levels). Limits of detection calculated on fortified samples were 20 µg kg-1 for lasalocid, 15 µg kg-1 for nicarbazin and 120 µg kg-1 for diclazuril. These values resulted at least one order of magnitude lower than the maximum allowed residue limit (MRL) of the studied coccidiostats for chicken liver.