Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(4): 2140-2145, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36652601

RESUMO

Stable K isotope ratios, an emerging research tool for a wide range of problems, can be measured precisely with high sensitivity by using collision cell multicollector ICP mass spectrometers (CC-MC-ICP-MS). However, it has been shown that the accuracy of K isotope analysis by CC-MC-ICP-MS could be compromised severely by trace-level Ca contaminants, although the cause of such an effect remains poorly understood. Here, we report that the influence of Ca on K isotope analysis by CC-MC-ICP-MS can be dramatically reduced if D2 rather than H2 (the default gas) is used as the reaction gas that goes into the collision cell. This indicates the generation of positively charged calcium-hydride molecules in the collision cell. Usage of D2 as reaction gas circumvents the Ca-induced inaccuracy issues during K isotope analysis because 40CaD+ does not interfere with 41K+ as 40CaH+ does; as such, the robustness of K isotope analysis by CC-MC-ICP-MS is significantly enhanced. This improved method is verified by K isotope analysis of seven geostandards, and applied to China's Chang'e-5 lunar return samples at submicrogram K consumption, revealing significant K isotope variability within a 17 mg lunar basalt fragment.

2.
Sci Adv ; 5(9): eaax4184, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31555741

RESUMO

The breakup of the L-chondrite parent body in the asteroid belt 466 million years (Ma) ago still delivers almost a third of all meteorites falling on Earth. Our new extraterrestrial chromite and 3He data for Ordovician sediments show that the breakup took place just at the onset of a major, eustatic sea level fall previously attributed to an Ordovician ice age. Shortly after the breakup, the flux to Earth of the most fine-grained, extraterrestrial material increased by three to four orders of magnitude. In the present stratosphere, extraterrestrial dust represents 1% of all the dust and has no climatic significance. Extraordinary amounts of dust in the entire inner solar system during >2 Ma following the L-chondrite breakup cooled Earth and triggered Ordovician icehouse conditions, sea level fall, and major faunal turnovers related to the Great Ordovician Biodiversification Event.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...