Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(5)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37242663

RESUMO

Due to their distinctive structural features, lyotropic nonlamellar liquid crystalline nanoparticles (LCNPs), such as cubosomes and hexosomes, are considered effective drug delivery systems. Cubosomes have a lipid bilayer that makes a membrane lattice with two water channels that are intertwined. Hexosomes are inverse hexagonal phases made of an infinite number of hexagonal lattices that are tightly connected with water channels. These nanostructures are often stabilized by surfactants. The structure's membrane has a much larger surface area than that of other lipid nanoparticles, which makes it possible to load therapeutic molecules. In addition, the composition of mesophases can be modified by pore diameters, thus influencing drug release. Much research has been conducted in recent years to improve their preparation and characterization, as well as to control drug release and improve the efficacy of loaded bioactive chemicals. This article reviews current advances in LCNP technology that permit their application, as well as design ideas for revolutionary biomedical applications. Furthermore, we have provided a summary of the application of LCNPs based on the administration routes, including the pharmacokinetic modulation property.

2.
Am J Physiol Lung Cell Mol Physiol ; 324(2): L190-L198, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36625494

RESUMO

Pulmonary fibrosis is characterized by the accumulation of myofibroblasts in the lung and progressive tissue scarring. Fibroblasts exist across a spectrum of states, from quiescence in health to activated myofibroblasts in the setting of injury. Highly activated myofibroblasts have a critical role in the establishment of fibrosis as the predominant source of type 1 collagen and profibrotic mediators. Myofibroblasts are also highly contractile cells and can alter lung biomechanical properties through tissue contraction. Inhibiting signaling pathways involved in myofibroblast activation could therefore have significant therapeutic value. One of the ways myofibroblast activation occurs is through activation of the Rho/myocardin-related transcription factor (MRTF)/serum response factor (SRF) pathway, which signals through intracellular actin polymerization. However, concerns surrounding the pleiotropic and ubiquitous nature of these signaling pathways have limited the translation of inhibitory drugs. Herein, we demonstrate a novel therapeutic antifibrotic strategy using myofibroblast-targeted nanoparticles containing a MTRF/SRF pathway inhibitor (CCG-1423), which has been shown to block myofibroblast activation in vitro. Myofibroblasts were preferentially targeted via the angiotensin 2 receptor, which has been shown to be selectively upregulated in animal and human studies. These nanoparticles were nontoxic and accumulated in lung myofibroblasts in the bleomycin-induced mouse model of pulmonary fibrosis, reducing the number of these activated cells and their production of profibrotic mediators. Ultimately, in a murine model of lung fibrosis, a single injection of these drugs containing targeted nanoagents reduced fibrosis as compared with control mice. This approach has the potential to deliver personalized therapy by precisely targeting signaling pathways in a cell-specific manner, allowing increased efficacy with reduced deleterious off-target effects.


Assuntos
Fibrose Pulmonar , Fatores de Transcrição , Humanos , Animais , Camundongos , Fatores de Transcrição/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/prevenção & controle , Miofibroblastos/metabolismo , Fator de Resposta Sérica/metabolismo , Quinases Associadas a rho/metabolismo , Fibrose , Pulmão/metabolismo , Nanotecnologia , Diferenciação Celular
3.
Drug Discov Today ; 27(8): 2043-2050, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35304339

RESUMO

Cancer treatments have advanced considerably in recent years, appreciably enhancing the quality of life and survival of cancer patients. However, standard cancer treatments still have limitations that must be improved. In recent years, bacteria-based cancer therapy has gained much more attention owing to its unique properties that are unachievable with standard therapeutics. Bacteria species such as Salmonella, Clostridium, and Listeria have been shown to control tumor growth with improved prognosis in experimental animal models and clinical settings.


Assuntos
Neoplasias , Qualidade de Vida , Animais , Bactérias , Clostridium , Humanos , Neoplasias/tratamento farmacológico , Salmonella
4.
Int J Nanomedicine ; 15: 8437-8449, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162754

RESUMO

BACKGROUND: Lipid polymer hybrid nanoparticles (LPHNPs) have been widely investigated in drug and gene delivery as well as in medical imaging. A knowledge of lipid-based surface engineering and its effects on how the physicochemical properties of LPHNPs affect the cell-nanoparticle interactions, and consequently how it influences the cytological response, is in high demand. METHODS: Herein, we have engineered antibiotic-loaded (doxycycline or vancomycin) LPHNPs with cationic and zwitterionic lipids and examined the effects on their physicochemical characteristics (size and charge), antibiotic entrapment efficiency, and the in vitro intracellular bacterial killing efficiency against Mycobacterium smegmatis or Staphylococcus aureus infected macrophages. RESULTS: The incorporation of cationic or zwitterionic lipids in the LPHNP formulation resulted in a size reduction in LPHNPs formulations and shifted the surface charge of bare NPs towards positive or neutral values. Also observed were influences on the drug incorporation efficiency and modulation of the drug release from the biodegradable polymeric core. The therapeutic efficacy of LPHNPs loaded with vancomycin was improved as its minimum inhibitory concentration (MIC) (2 µg/mL) versus free vancomycin (4 µg/mL). Importantly, our results show a direct relationship between the cationic surface nature of LPHNPs and its intracellular bacterial killing efficiency as the cationic doxycycline or vancomycin loaded LPHNPs reduced 4 or 3 log CFU respectively versus the untreated controls. CONCLUSION: In our study, modulation of surface charge in the nanomaterial formulation increased macrophage uptake and intracellular bacterial killing efficiency of LPHNPs loaded with antibiotics, suggesting alternate way for optimizing their use in biomedical applications.


Assuntos
Antibacterianos/farmacologia , Sistemas de Liberação de Medicamentos , Espaço Intracelular/microbiologia , Macrófagos/microbiologia , Nanopartículas/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Lipídeos/química , Macrófagos/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Mycobacterium smegmatis/efeitos dos fármacos , Tamanho da Partícula , Polímeros/química , Staphylococcus aureus/efeitos dos fármacos , Vancomicina/farmacologia
5.
Life Sci ; 260: 118482, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32971105

RESUMO

Cardiovascular disease (CVD) is the most common co-morbidity associated with COVID-19 and the fatality rate in COVID-19 patients with CVD is higher compared to other comorbidities, such as hypertension and diabetes. Preliminary data suggest that COVID-19 may also cause or worsen cardiac injury in infected patients through multiple mechanisms such as 'cytokine storm', endotheliosis, thrombosis, lymphocytopenia etc. Autopsies of COVID-19 patients reveal an infiltration of inflammatory mononuclear cells in the myocardium, confirming the role of the immune system in mediating cardiovascular damage in response to COVID-19 infection and also suggesting potential causal mechanisms for the development of new cardiac pathologies and/or exacerbation of underlying CVDs in infected patients. In this review, we discuss the potential underlying molecular mechanisms that drive COVID-19-mediated cardiac damage, as well as the short term and expected long-term cardiovascular ramifications of COVID-19 infection in patients.


Assuntos
Betacoronavirus/isolamento & purificação , Doenças Cardiovasculares/etiologia , Infecções por Coronavirus/complicações , Inflamação/etiologia , Pneumonia Viral/complicações , COVID-19 , Doenças Cardiovasculares/patologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Humanos , Inflamação/patologia , Pandemias , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Prognóstico , SARS-CoV-2
7.
Artigo em Inglês | MEDLINE | ID: mdl-32403261

RESUMO

Hand hygiene is of utmost importance as it may be contaminated easily from direct contact with airborne microorganism droplets from coughs and sneezes. Particularly in situations like pandemic outbreak, it is crucial to interrupt the transmission chain of the virus by the practice of proper hand sanitization. It can be achieved with contact isolation and strict infection control tool like maintaining good hand hygiene in hospital settings and in public. The success of the hand sanitization solely depends on the use of effective hand disinfecting agents formulated in various types and forms such as antimicrobial soaps, water-based or alcohol-based hand sanitizer, with the latter being widely used in hospital settings. To date, most of the effective hand sanitizer products are alcohol-based formulations containing 62%-95% of alcohol as it can denature the proteins of microbes and the ability to inactivate viruses. This systematic review correlated with the data available in Pubmed, and it will investigate the range of available hand sanitizers and their effectiveness as well as the formulation aspects, adverse effects, and recommendations to enhance the formulation efficiency and safety. Further, this article highlights the efficacy of alcohol-based hand sanitizer against the coronavirus.


Assuntos
Desinfecção das Mãos , Higienizadores de Mão , Surtos de Doenças , Desinfetantes , Etanol , Desinfecção das Mãos/normas , Higiene das Mãos , Higienizadores de Mão/toxicidade , Humanos , Controle de Infecções , Sabões , Vírus , Água
8.
ACS Nano ; 14(5): 5818-5835, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32347709

RESUMO

Staphylococcus aureus (S. aureus) is a highly pathogenic facultative anaerobe that in some instances resides as an intracellular bacterium within macrophages and cancer cells. This pathogen can establish secondary infection foci, resulting in recurrent systemic infections that are difficult to treat using systemic antibiotics. Here, we use reconstructed apoptotic bodies (ReApoBds) derived from cancer cells as "nano decoys" to deliver vancomycin intracellularly to kill S. aureus by targeting inherent "eat me" signaling of ApoBds. We prepared ReApoBds from different cancer cells (SKBR3, MDA-MB-231, HepG2, U87-MG, and LN229) and used them for vancomycin delivery. Physicochemical characterization showed ReApoBds size ranges from 80 to 150 nm and vancomycin encapsulation efficiency of 60 ± 2.56%. We demonstrate that the loaded vancomycin was able to kill intracellular S. aureus efficiently in an in vitro model of S. aureus infected RAW-264.7 macrophage cells, and U87-MG (p53-wt) and LN229 (p53-mt) cancer cells, compared to free-vancomycin treatment (P < 0.001). The vancomycin loaded ReApoBds treatment in S. aureus infected macrophages showed a two-log-order higher CFU reduction than the free-vancomycin treatment group. In vivo studies revealed that ReApoBds can specifically target macrophages and cancer cells. Vancomycin loaded ReApoBds have the potential to kill intracellular S. aureus infection in vivo in macrophages and cancer cells.


Assuntos
Vesículas Extracelulares , Neoplasias , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Macrófagos , Camundongos , Testes de Sensibilidade Microbiana , Neoplasias/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus , Vancomicina/farmacologia
9.
J Control Release ; 309: 1-10, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31326463

RESUMO

In this study, we designed and validated a platform for ultrasound and microbubble-mediated delivery of FDA-approved pegylated poly lactic-co-glycolic acid (PLGA) nanoparticles loaded with anticancer microRNAs (miRNAs) to deep tissues in a pig model. Small RNAs have been shown to reprogram tumor cells and sensitize them to clinically used chemotherapy. To overcome their short intravascular circulation half-life and achieve controlled and sustained release into tumor cells, anticancer miRNAs need to be encapsulated into nanocarriers. Focused ultrasound combined with gas-filled microbubbles provides a noninvasive way to improve the permeability of tumor vasculature and increase the delivery efficiency of drug-loaded particles. A single handheld, curvilinear ultrasound array was used in this study for image-guided therapy with clinical-grade SonoVue contrast agent. First, we validated the platform on phantoms to optimize the microbubble cavitation dose based on acoustic parameters, including peak negative pressure, pulse length, and pulse repetition frequency. We then tested the system in vivo by delivering PLGA nanoparticles co-loaded with antisense-miRNA-21 and antisense-miRNA-10b to pig liver and kidney. Enhanced miRNA delivery was observed (1.9- to 3.7-fold increase) as a result of the ultrasound treatment compared to untreated control regions. Additionally, we used highly fluorescent semiconducting polymer nanoparticles to visually assess nanoparticle extravasation. Fluorescent microscopy suggested the presence of nanoparticles in the extravascular compartment. Hematoxylin and eosin staining of treated tissues did not reveal tissue damage. The results presented in this manuscript suggest that the proposed platform may be used to safely and noninvasively enhance the delivery of miRNA-loaded nanoparticles to target regions in deep organs in large animal models.


Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Nanopartículas/química , Neoplasias/terapia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , RNA Antissenso/administração & dosagem , Animais , Sistemas de Liberação de Medicamentos/métodos , Feminino , Terapia Genética , MicroRNAs/genética , Microbolhas , Neoplasias/genética , RNA Antissenso/genética , RNA Antissenso/farmacocinética , Suínos , Terapia por Ultrassom/instrumentação , Terapia por Ultrassom/métodos
10.
Biomaterials ; 218: 119342, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31326657

RESUMO

The prognosis for glioblastoma (GBM) remains depressingly low. The biological barriers of the brain present a major challenge to achieving adequate drug concentrations for GBM therapy. To address this, we explore the potential of the nose-to-brain direct transport pathway to bypass the blood-brain barrier, and to enable targeted delivery of theranostic polyfunctional gold-iron oxide nanoparticles (polyGIONs) surface loaded with therapeutic miRNAs (miR-100 and antimiR-21) to GBMs in mice. These nanoformulations would thus allow presensitization of GBM cells to the systemically delivered chemotherapy drug temozolomide (TMZ), as well as in vivo multimodality molecular and anatomic imaging of nanoparticle delivery, trafficking, and treatment effects. First, we synthesized GIONs coated with ß-cyclodextrin-chitosan (CD-CS) hybrid polymer, and co-loaded with miR-100 and antimiR-21. Then we decorated their surface with PEG-T7 peptide using CD-adamantane host-guest chemistry. The resultant polyGIONs showed efficient miRNA loading with enhanced serum stability. We characterized them for particle size, PDI, polymer functionalization, charge and release using dynamic light scattering analysis, TEM and qRT-PCR. For in vivo intranasal delivery, we used U87-MG GBM cell-derived orthotopic xenograft models in mice. Intranasal delivery resulted in efficient accumulation of Cy5-miRNAs in mice treated with T7-targeted polyGIONs, as demonstrated by in vivo optical fluorescence and MR imaging. We measured the therapeutic response of these FLUC-EGFP labelled U87-MG GBMs using bioluminescence imaging. Overall, there was a significant increase in survival of mice co-treated with T7-polyGIONs loaded with miR-100/antimiR-21 plus systemic TMZ, compared to the untreated control group, or the animals receiving non-targeted polyGIONs-miR-100/antimiR-21, or TMZ alone. Once translated clinically, this novel theranostic nanoformulation and its associated intranasal delivery strategy will have a strong potential to potentiate the effects of TMZ treatment in GBM patients.


Assuntos
Compostos Férricos/química , Glioblastoma/tratamento farmacológico , Ouro/química , MicroRNAs/química , Temozolomida/uso terapêutico , Animais , Linhagem Celular Tumoral , Quitosana/química , Sistemas de Liberação de Medicamentos/métodos , Resistencia a Medicamentos Antineoplásicos , Humanos , Camundongos , Nanomedicina Teranóstica , Ensaios Antitumorais Modelo de Xenoenxerto , beta-Ciclodextrinas/química
11.
Drug Discov Today ; 24(2): 492-504, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30342245

RESUMO

Stem cell therapies have demonstrated promising preclinical results, but very few applications have reached the clinic owing to safety and efficacy concerns. Translation would benefit greatly if stem cell survival, distribution and function could be assessed in vivo post-transplantation, particularly in patients. Advances in molecular imaging have led to extraordinary progress, with several strategies being deployed to understand the fate of stem cells in vivo using magnetic resonance, scintigraphy, PET, ultrasound and optical imaging. Here, we review the recent advances, challenges and future perspectives and opportunities in stem cell tracking and functional assessment, as well as the advantages and challenges of each imaging approach.


Assuntos
Rastreamento de Células , Células-Tronco/citologia , Animais , Humanos
12.
ACS Nano ; 12(11): 10817-10832, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30346694

RESUMO

MicroRNAs are critical regulators of cancer initiation, progression, and dissemination. Extensive evidence suggests that the inhibition of over-expressed oncogenic miRNA function can be a robust strategy for anticancer therapy. However, in vivo targeted delivery of miRNA therapeutics to various types of cancers remains a major challenge. Inspired by their natural synthesis and cargo delivery capabilities, researchers have exploited tumor cell-derived extracellular vesicles (TEVs) for the cancer-targeted delivery of therapeutics and theranostics. Here, we investigate a TEV-based nanoplatform for multimodal miRNA delivery and phototherapy treatments as well as the magnetic resonance imaging of cancer. We demonstrated loading of anti-miR-21 that blocks the function of endogenous oncogenic miR-21 over-expressed in cancer cells into and subsequent delivery by TEVs derived from 4T1 cells. We also produced Cy5-anti-miR-21-loaded TEVs from two other cancer cell lines (HepG2 and SKBR3) and confirmed their robust homologous and heterologous transfection efficiency and intracellular Cy5-anti-miR-21 delivery. Additionally, TEV-mediated anti-miR-21 delivery attenuated doxorubicin (DOX) resistance in breast cancer cells with a 3-fold higher cell kill efficiency than in cells treated with DOX alone. We then investigated TEVs as a biomimetic source for the functionalization of gold-iron oxide nanoparticles (GIONs) and demonstrated nanotheranostic properties of TEV-GIONs in vitro. TEV-GIONs demonstrated excellent T2 contrast in in vitro magnetic resonance (MR) imaging and resulted in efficient photothermal effect in 4T1 cells. We also evaluated the biodistribution and theranostic property of anti-miR-21 loaded TEV-GIONs in vivo by labeling with indocyanine green near-infrared dye. We further validated the tumor specific accumulation of TEV-GIONs using MR imaging. Our findings demonstrate that the distribution pattern of the TEV-anti-miR-21-GIONs correlated well with the tumor-targeting capability as well as the activity and efficacy obtained in response to doxorubicin combination treatments. TEVs and TEV-GIONs are promising nanotheranostics for future applications in cancer molecular imaging and therapy.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Neoplasias da Mama/terapia , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Vesículas Extracelulares/química , MicroRNAs/antagonistas & inibidores , Nanopartículas/química , Nanomedicina Teranóstica , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Células HEK293 , Humanos , Imageamento por Ressonância Magnética , Camundongos , MicroRNAs/química , Imagem Molecular , Fototerapia
13.
Drug Discov Today ; 22(8): 1258-1265, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28600191

RESUMO

With rapid advances in nanomedicine, lipid-polymer hybrid nanoparticles (LPHNPs) have emerged as promising nanocarriers for several biomedical applications, including therapeutics delivery and biomedical imaging. Significant research has been dedicated to biomimetic or targeting functionalization, as well as controlled and image-guided drug-release capabilities. Despite this research, the clinical translation of LPHNP-mediated therapeutics delivery has progressed incrementally. In this review, we discuss the recent advances in and challenges to the development and application of LPHNPs, present examples to demonstrate the advantages of LPHNPs in therapeutics delivery and imaging applications, and discuss the translational obstacles to LPHNP technology.


Assuntos
Sistemas de Liberação de Medicamentos , Lipídeos , Nanopartículas , Polímeros , Animais , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Membrana Celular/química , Humanos , Lipídeos/administração & dosagem , Lipídeos/química , Nanopartículas/administração & dosagem , Nanopartículas/química , Polímeros/administração & dosagem , Polímeros/química
14.
Nutrition ; 34: 47-54, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28063511

RESUMO

Diabetic cardiomyopathy (DCM) is described as impaired cardiac diastolic and systolic functions. Diabetes mellitus (DM), a related cardiovascular disease, has become one of the major causes of death in DM patients. Mortality in these diseases is 2 to 3 times higher than in non-DM patients with cardiovascular disease. The progression of DCM and the cellular and molecular perturbations associated with the pathogenesis are complex and multifactorial. Although considerable progress has been achieved, the molecular etiologies of DCM remain poorly understood. There is an expanding need for natural antidiabetic medicines that do not cause the side effects of modern drugs. Curcumin, a pleiotropic molecule, from Curcuma longa, is known to possess numerous impacts such as scavenging free radical, antioxidant, antitumor, and antiinflammatory activities. The reports from preclinical and clinical findings revealed that curcumin can reverse insulin resistance, hyperglycemia, obesity, and obesity-related metabolic diseases. The current review provides an updated overview of the possible molecular mechanism of DCM and multitarget approach of curcumin in alleviating DCM and diabetic complication. Additionally, we mentioned the approaches that are currently being implemented to improve the bioavailability of this promising natural product in diabetes therapeutics.


Assuntos
Curcumina/farmacocinética , Cardiomiopatias Diabéticas/tratamento farmacológico , Hipoglicemiantes/farmacocinética , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacocinética , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Curcuma/química , Curcumina/administração & dosagem , Curcumina/química , Modelos Animais de Doenças , Coração/efeitos dos fármacos , Coração/fisiologia , Humanos , Hipoglicemiantes/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacocinética
15.
Drug Discov Today ; 21(8): 1303-12, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27297732

RESUMO

Biological barriers, such as phagocytosis and nonspecific distribution, are major factors limiting the clinical translation of nanomedicine. Biomimetic and bioengineering strategies have been used to overcome these challenges. In particular, natural cell membrane-based biofunctionalized nanoparticles (CMFNPs) have gained widespread attention owing to their cell surface mimetic characteristics and tailored nanomaterial features. These hybrid nanocarriers show strong potential for the delivery of myriad therapeutic agents. Herein, we highlight the most recent advances in CMFNP-based drug delivery systems and address the challenges and opportunities in the field.


Assuntos
Membrana Celular , Sistemas de Liberação de Medicamentos , Nanopartículas , Animais , Humanos
16.
Int J Nanomedicine ; 10: 5367-82, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26379434

RESUMO

Nanoparticles have been widely used for nonviral gene delivery. Recently, cationic hybrid nanoparticles consisting of two different materials were suggested as a promising delivery vehicle. In this study, nanospheres with a poly(D,L-lactic-co-glycolic acid) (PLGA) core and cationic lipid shell were prepared, and the effect of cationic lipid concentrations on the properties of lipid polymer hybrid nanocarriers investigated. Lipid-polymer hybrid nanospheres (LPHNSs) were fabricated by the emulsion-solvent evaporation method using different concentrations of cationic lipids and characterized for size, surface charge, stability, plasmid DNA-binding capacity, cytotoxicity, and transfection efficiency. All LPHNSs had narrow size distribution with positive surface charges (ζ-potential 52-60 mV), and showed excellent plasmid DNA-binding capacity. In vitro cytotoxicity measurements with HEK293T, HeLa, HaCaT, and HepG2 cells also showed that LPHNSs exhibited less cytotoxicity than conventional transfection agents, such as Lipofectamine and polyethyleneimine-PLGA. As cationic lipid concentrations increased, the particle size of LPHNSs decreased while their ζ-potential increased. In addition, the in vitro transfection efficiency of LPHNSs increased as lipid concentration increased.


Assuntos
Cátions/química , Técnicas de Transferência de Genes , Lipídeos/química , Nanosferas/química , Linhagem Celular Tumoral , Emulsões , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Ácido Láctico/química , Tamanho da Partícula , Polietilenoimina/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...