Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 350: 123991, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631449

RESUMO

Chromium (Cr) is a heavy metal that poses a grave threat to the ecosystem including plants. Chromium is very harmful to plants due to its effects on many physiological and metabolic pathways culminating in a negative impact on plant's growth, development, and ability to take up nutrients. Plants have developed physiological, biochemical, and molecular ways of defense against Cr, such as by augmenting antioxidant potential to reduce reactive oxygen species (ROS). A number of genes have been discovered to play a significant role in the defense mechanisms of plants against Cr, for example, genes associated with the activation of phytochelatins, metallothioneins, and those of enzymes like glutathione-S-transferases. Along with this, a few miRNAs have been found to be associated in alleviating Cr stress and, to augment plant tolerance by controlling transcription factors, HSPs, and the expression of a few proteins and hormones. Defense pathway genes and miRNAs have been used for the generation of transgenic phytoremediator plants. Not only do the transgenic plants have a higher tolerance to Cr, but they also act as hyperaccumulators for Cr and have the potential to remediate other heavy metals. This article describes about environmental Cr contamination, Cr effects on plants, different genes and miRNAs involved in Cr stress mitigation and use of candidate genes, microRNAs for creating transgenic plant systems for phytoremediation, and the applications of CRISPR technology. It is expected that the integration of omics approach and advanced genomics will offer scope for more effective phytoremediation of Chromium in the coming years.


Assuntos
Biodegradação Ambiental , Cromo , Plantas Geneticamente Modificadas , Plantas , Poluentes do Solo , Cromo/metabolismo , Cromo/toxicidade , Poluentes do Solo/metabolismo , Plantas/metabolismo , Plantas/genética , Plantas Geneticamente Modificadas/genética , MicroRNAs/genética , MicroRNAs/metabolismo
2.
Front Pharmacol ; 14: 1218867, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601050

RESUMO

The field of cancer nanotheranostics is rapidly evolving, with cyclodextrin (CD)-based nanoparticles emerging as a promising tool. CDs, serving as nanocarriers, have higher adaptability and demonstrate immense potential in delivering powerful anti-cancer drugs, leading to promising and specific therapeutic outcomes for combating various types of cancer. The unique characteristics of CDs, combined with innovative nanocomplex creation techniques such as encapsulation, enable the development of potential theranostic treatments. The review here focuses mainly on the different techniques administered for effective nanotheranostics applications of CD-associated complex compounds in the domain of cancer treatments. The experimentations on various loaded drugs and their complex conjugates with CDs prove effective in in vivo results. Various cancers can have potential nanotheranostics cures using CDs as nanoparticles along with a highly efficient process of nanocomplex development and a drug delivery system. In conclusion, nanotheranostics holds immense potential for targeted drug delivery and improved therapeutic outcomes, offering a promising avenue for revolutionizing cancer treatments through continuous research and innovative approaches.

3.
Front Mol Biosci ; 9: 824846, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187085

RESUMO

Mitochondrial high-temperature requirement protease A2 (HtrA2) is an integral member of the HtrA family of serine proteases that are evolutionarily conserved from prokaryotes to humans. Involvement in manifold intricate cellular networks and diverse pathophysiological functions make HtrA2 the most enigmatic moonlighting protease amongst the human HtrAs. Despite perpetuating the oligomeric architecture and overall structural fold of its homologs that comprises serine protease and regulatory PDZ domains, subtle conformational alterations and dynamic enzymatic regulation through the distinct allosteric mode of action lead to its functional diversity. This mitochondrial protease upon maturation, exposes its one-of-a-kind N-terminal tetrapeptide (AVPS) motif that binds and subsequently cleaves Inhibitor of Apoptosis Proteins (IAPs) thus promoting cell death, and posing as an important molecule for therapeutic intervention. Interestingly, unlike its other human counterparts, HtrA2 has also been implicated in maintaining the mitochondrial integrity through a bi-functional chaperone-protease activity, the on-off switch of which is yet to be identified. Furthermore, its ability to activate a wide repertoire of substrates through both its N- and C-terminal regions presumably has calibrated its association with several cellular pathways and hence diseases including neurodegenerative disorders and cancer. Therefore, the exclusive structural attributes of HtrA2 that involve multimodal activation, intermolecular PDZ-protease crosstalk, and an allosterically-modulated trimeric active-site ensemble have enabled the protease to evolve across species and partake functions that are fine-tuned for maintaining cellular homeostasis and mitochondrial proteome quality control in humans. These unique features along with its multitasking potential make HtrA2 a promising therapeutic target both in cancer and neurodegeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...