Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Drug Saf ; 19(2): 208-217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36999718

RESUMO

Phenylalanine, an essential amino acid, is the "building block" of protein. It has a tremendous role in different aspects of metabolic events. The tyrosine pathway is the prime one and is typically used to degrade dietary phenylalanine. Phenylalanine exceeds its limit in bodily fluids and the brain when the enzyme, phenylalanine decarboxylase, phenylalanine transaminase, phenylalanine hydroxylase (PAH) or its cofactor tetrahydrobiopterin (BH4) is deficient causes phenylketonuria, schizophrenia, attentiondeficit/ hyperactivity disorder and another neuronal effect. Tyrosine, an amino acid necessary for synthesizing the pigments in melanin, is produced by its primary metabolic pathway. Deficiency/abnormality in metabolic enzymes responsible for the catabolism pathway of Phenylalanine causes an accumulation of the active intermediate metabolite, resulting in several abnormalities, such as developmental delay, tyrosinemias, alkaptonuria, albinism, hypotension and several other undesirable conditions. Dietary restriction of the amino acid(s) can be a therapeutic approach to avoid such undesirable conditions when the level of metabolic enzyme is unpredictable. After properly identifying the enzymatic level, specific pathophysiological conditions can be managed more efficiently.


Assuntos
Fenilalanina Hidroxilase , Fenilcetonúrias , Humanos , Fenilalanina/metabolismo , Fenilcetonúrias/metabolismo , Fenilalanina Hidroxilase/química , Fenilalanina Hidroxilase/metabolismo , Aminoácidos , Tirosina/metabolismo
2.
Ann Neurosci ; 30(1): 11-19, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37313335

RESUMO

Background: Parkinson's disease (PD) is a progressive neurodegenerative disorder that mainly affects the aged population. Transcranial magnetic field (MF) stimulation has shown to provide temporary motor recovery in neurological disorders. Purpose: The aim of this study was to understand the cellular and molecular mechanism of low-intensity MF stimulation (17.96 µT; 50Hz; 2 h/day, four weeks) in a rat model of severe PD. Methods: A clinically relevant, bilateral striatal 6-hydroxydopamine (6-OHDA) lesioned rat model of severe PD was employed to test the efficacy of low-intensity MF stimulation in the management of motor symptoms. The mechanism of action of MF was dissected by assessing the microglial activation, tissue ultrastructure, and cerebrospinal fluid (CSF) metabolomics using microdialysis. Results: We observed a significant improvement in the postural balance and gait after MF exposure with a significant reduction in the number of activated microglia. There was an improvement in striatal dopaminergic innervation and glutamate levels but it did not reach a level of statistical significance. Conclusion: MF stimulation helped ameliorate the motor deficits and reduced inflammation but was unable to provide a significant change in terms of dopaminergic innervation and metabolic profile in the severe 6-OHDA PD rat model.

3.
Cell Death Discov ; 7(1): 13, 2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33454721

RESUMO

Oxysterols play vital roles in the human body, ranging from cell cycle regulation and progression to dopaminergic neurogenesis. While naïve human mesenchymal stem cells (hMSCs) have been explored to have neurogenic effect, there is still a grey area to explore their regenerative potential after in vitro differentiation. Hence, in the current study, we have investigated the neurogenic effect of 22(R)-hydroxycholesterol (22-HC) on hMSCs obtained from bone marrow, adipose tissue and dental pulp. Morphological and morphometric analysis revealed physical differentiation of stem cells into neuronal cells. Detailed characterization of differentiated cells affirmed generation of neuronal cells in culture. The percentage of generation of non-DA cells in the culture confirmed selective neurogenic potential of 22-HC. We substantiated the efficacy of these cells in neuro-regeneration by transplanting them into Parkinson's disease Wistar rat model. MSCs from dental pulp had maximal regenerative effect (with 80.20 ± 1.5% in vitro differentiation efficiency) upon transplantation, as shown by various behavioural examinations and immunohistochemical tests. Subsequential analysis revealed that 22-HC yields a higher percentage of functional DA neurons and has differential effect on various tissue-specific primary human MSCs. 22-HC may be used for treating Parkinson's disease in future with stem cells.

5.
Bipolar Disord ; 22(3): 266-280, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31535429

RESUMO

BACKGROUND: Ample amount of data suggests role of rapid eye movement (REM) sleep deprivation as the cause and effect of mania. Studies have also suggested disrupted circadian rhythms contributing to the pathophysiology of mood disorders, including bipolar disorder. However, studies pertaining to circadian genes and effect of lithium treatment on clock genes are scant. Thus, we wanted to determine the effects of REM sleep deprivation on expression of core clock genes and determine whether epigenetics is involved. Next, we wanted to explore ultrastructural abnormalities in the hippocampus. Moreover, we were interested to determine oxidative stress, tumor necrosis factor-α (TNF-α), and brain-derived neurotrophic factor levels in the central and peripheral systems. METHODS: Rats were sleep deprived by the flower pot method and were then analyzed for various behaviors and biochemical tests. Lithium was supplemented in diet. RESULTS: We found that REM sleep deprivation resulted in hyperactivity, reduction in anxiety-like behavior, and abnormal dyadic social interaction. Some of these behaviors were sensitive to lithium. REM sleep deprivation also altered circadian gene expression and caused significant imbalance between histone acetyl transferase/histone deacetylase (HAT/HDAC) activity. Ultrastructural analysis revealed various cellular abnormalities. Lipid peroxidation and increased TNF-α levels suggested oxidative stress and ongoing inflammation. Circadian clock genes were differentially modulated with lithium treatment and HAT/HDAC imbalance was partially prevented. Moreover, lithium treatment prevented myelin fragmentation, disrupted vasculature, necrosis, inflammation, and lipid peroxidation, and partially prevented mitochondrial damage and apoptosis. CONCLUSIONS: Taken together, these results suggest plethora of abnormalities in the brain following REM sleep deprivation, many of these changes in the brain may be target of lithium's mechanism of action.


Assuntos
Antimaníacos/farmacologia , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/metabolismo , Compostos de Lítio/farmacologia , Privação do Sono/complicações , Animais , Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo , Relógios Circadianos , Ritmo Circadiano , Hipocampo/efeitos dos fármacos , Peroxidação de Lipídeos , Masculino , Estresse Oxidativo/fisiologia , Ratos
6.
Electromagn Biol Med ; 36(4): 330-340, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29140736

RESUMO

Spinal cord injury (SCI) is insult to the spinal cord, which results in loss of sensory and motor function below the level of injury. SCI results in both immediate mechanical damage and secondary tissue degeneration. Following traumatic insult, activated microglia release proinflammatory cytokines and excess iron due to hemorrhage, initiating oxidative stress that contributes to secondary degeneration. Literature suggests that benefits are visible with the reduction in concentration of iron and activated microglia in SCI. Magnetic field attenuates oxidative stress and promotes axonal regeneration in vitro and in vivo. The present study demonstrates the potential of extremely low frequency magnetic field to attenuate microglia- and iron-induced secondary injury in SCI rats. Complete transection of the spinal cord (T13 level) was performed in male Wistar rats and subsequently exposed to magnetic field (50 Hz,17.96 µT) for 2 h daily for 8 weeks. At the end of the study period, spinal cords were dissected to quantify microglia, macrophage, iron content and study the architecture of lesion site. A significant improvement in locomotion was observed in rats of the SCI + MF group as compared to those in the SCI group. Histology, immunohistochemistry and flow cytometry revealed significant reduction in lesion volume, microglia, macrophage, collagen tissue and iron content, whereas, a significantly higher vascular endothelial growth factor expression around the epicenter of the lesion in SCI + MF group as compared to SCI group. These novel findings suggest that exposure to ELF-MF reduces lesion volume, inflammation and iron content in addition to facilitation of angiogenesis following SCI.


Assuntos
Ferro/análise , Campos Magnéticos , Microglia/citologia , Traumatismos da Medula Espinal/terapia , Animais , Axônios/fisiologia , Colágeno/química , Citometria de Fluxo , Radicais Livres/análise , Inflamação , Locomoção , Macrófagos/citologia , Masculino , Neovascularização Fisiológica , Estresse Oxidativo , Ratos , Ratos Wistar , Medula Espinal/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
J Nanosci Nanotechnol ; 16(1): 261-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27398453

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting mainly the dopaminergic neurons of the substantia nigra leading to various motor and non-motor deficits. We explored the neuroprotective potential of superparamagnetic iron oxide nanoparticles (IONPs) along with exposure to EMF in 6-OHDA rat model of PD. IONPs were implanted at the site of lesion and 24 h thereafter the rats were exposed to magnetic fields 2 h/day for one week. Bilateral lesions of the striatum were made with 6-OHDA. The rats in all the intervention groups improved progressively over the days and by post-surgery day 4 they were active and bright. We observed a significant beneficial effect of the IONPs implantation and MF exposure on feeding behavior, gait and postural stability. There was a significant enhancement of mitochondrial function and attenuation of lesion volume in all the intervention groups as compared to PD. The results demonstrate neuroprotective effect of iron oxide nanoparticle implantation and magnetic field exposure in an in vivo 6-OHDA rat model of PD.


Assuntos
Comportamento Animal/efeitos dos fármacos , Magnetoterapia/métodos , Nanopartículas de Magnetita/química , Oxidopamina/efeitos adversos , Doença de Parkinson Secundária/fisiopatologia , Doença de Parkinson Secundária/terapia , Animais , Modelos Animais de Doenças , Campos Eletromagnéticos , Masculino , Oxidopamina/farmacologia , Doença de Parkinson Secundária/induzido quimicamente , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...