Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(12): 21887-21908, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38859532

RESUMO

Image reconstruction in fluorescence microscopy is highly sensitive to the accuracy of the impulse response, defined as the point spread function (PSF), of the optical system under which the image to reconstruct was acquired. In our previous work, we developed a MATLAB toolbox for accurately calculating realistic vector Fourier-based PSF accounting for any type of aberrations [arXiv, arXiv:2301.13515 (2023)10.48550/arXiv.2301.13515]. In this work, we present a fundamental experimental validation of these numerical methods. The simulated results are found to fit experimental data under different image acquisition conditions at an accuracy higher than 0.97 in normalized cross-correlation. These methods enable a relative contrast of up to 95%.

2.
Sci Rep ; 14(1): 12770, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834608

RESUMO

Nonlinear microscopy has become an invaluable tool for biological imaging, offering high-resolution visualization of biological specimens. In this manuscript, we present the application of a spectral phase measurement technique, i 2 PIE, to compress broad-bandwidth supercontinuum pulses for two-photon excitation fluorescence light-sheet fluorescence microscopy. The results demonstrated a significant improvement in the two-photon excitation response achieved. We also showed that the implementation of i 2 PIE allowed for enhanced image contrasts when compared to conventional compression techniques, with i 2 PIE producing an image contrast improvement over conventional methods by over 50%.

3.
RSC Adv ; 13(24): 16175-16184, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37260711

RESUMO

Recently, plasmonic nanoparticles (NPs) have attracted considerable attention as good candidates for enhancing the power conversion efficiency (PCE) of organic solar cells (OSCs) owing to their localized surface plasmon resonance (LSPR). In this study, the effect of embedding colloidal gold nanoparticles (cAu NPs) in the ZnO electron transport layer (ETL) on the PCEs of wide band gap polymer-based inverted OSCs was investigated. The active layer was composed of a bulk heterojunction of conjugated polymer based on indacenodithieno[3,2-b]thiophene and 5,5'-di(thiophen-2-yl)-2,2'-bithiazole PIDTT-DTBTz as a donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as an acceptor. The PCE of the reference device was improved by 22% when 10 wt% cAu NPs were embedded in the ZnO ETL. The short circuit current density (JSC) and fill factor (FF) were the main photovoltaic parameters contributing to the PCE enhancement. An improved absorption in the active layer due to the LSPR of cAu NPs as well as efficient exciton dissociation and charge collection were found to be the reasons for the enhanced JSC while the increase in FF was mainly due to the suppressed traps and improved conductivity of the ZnO layer by the NPs.

4.
J Sci Food Agric ; 103(1): 7-25, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35821577

RESUMO

White wine phenolic analyses are less common in the literature than analyses of red wine phenolics. Analytical techniques for white wine phenolic analyses using spectrophotometric, chromatographic, spectroscopic, and electrochemical methods are reported. The interest of research in this area combined with the advances in technology aimed at the winemaking industry are promoting the establishment of novel approaches for identifying, quantifying, and classifying phenolic compounds in white wine. This review article provides an overview of the current research into white wine phenolics through a critical discussion of the analytical methods employed. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Vitis , Vinho , Vinho/análise , Fenóis/análise , Espectrofotometria , Vitis/química
5.
Talanta ; 236: 122857, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635241

RESUMO

Phenolic compounds are secondary metabolites known to play crucial roles in important chemical reactions impacting the mouthfeel, colour and ageing potential of red wine. Their complexity has resulted in a number of advanced analytical methods, which often prevent routine phenolic analysis in winemaking. Fluorescence spectroscopy could be an alternative to current spectrophotometric techniques and its combination with chemometrics was investigated for its suitability in directly quantifying phenolic content of unaltered red wine and fermenting samples. Front-face fluorescence was optimised and used to build predictive models for total phenols, total condensed tannins, total anthocyanins, colour density and polymeric pigments. Machine learning algorithms were used for model development. The most successful models were built for total phenols, total condensed tannins and total anthocyanins with coefficient of determination (R2cal) and RMSECV of 0.81, 0.89, 0.80 and 5.71, 104.03 mg/L, 60.67 mg/L, respectively. The validation results showed R2val values of 0.77, 0.8 and 0.77, and RMSEP values of 7.6, 172.37 mg/L and 76.57 mg/L, respectively. A novel approach for the classification of South African red wine cultivars based on unique fluorescent fingerprints was also successful with an overall cross validation score of 0.8. The best classification ability (validation score = 0.93) was shown for the data set containing only fermenting wines for the most widely represented cultivars (>20 samples). This approach may provide a useful tool for authentication and quality control by regulatory bodies.


Assuntos
Proantocianidinas , Vinho , Antocianinas/análise , Fenóis/análise , Espectrometria de Fluorescência , Vinho/análise
6.
J Phys Chem A ; 118(5): 844-55, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24422764

RESUMO

The ultrafast dynamics of the photochromic reaction of dithizonatophenylmercury(II) was recently reported. For purpose of investigating the effect of electronically different substituents (X = o-F, m-F, p-F, p-Cl, o-CH3, m-CH3, p-CH3, m,p-diCH3, p-OCH3, o-SCH3, and p-SCH3) on this reaction, a series of phenyl-substituted dithizones were synthesized and complexed with phenylmercury(II). A variation of more than 3 ps in ground state repopulation times was observed, with the o-methyl derivative absorbing both at shortest wavelength and having the fastest repopulation time, while the p-S-methyl derivative lies at the opposite extremity. An increase in both decay times and λmax values is generally reflected by an increase in electron density in the chromophore. Ultrafast rates also proved to be dependent on solvent polarity, while a profound solvatochromic effect was observed in the transition state absorbance. Density functional theory realistically simulated isomer stabilities, electronic spectra and molecular orbitals. Increased electron density enhances stability in the photoexcited blue isomer relative to the orange resting state, as seen from a comparison between orange and blue isomer total bonding energies. A linear trend between computed HOMO energies and experimental λmax of related aliphatic substituted derivatives was found.

7.
Chemphyschem ; 12(14): 2653-8, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21882332

RESUMO

The initial photochromic reaction of dithizonatophenylmercury(II) in solution was investigated by femtosecond transient absorption spectroscopy. Ultrafast excitation within less than 100 fs caused a radiationless photoreaction with a time constant of 1.5 ps, which is interpreted as C=N isomerization through a conical intersection. The orthogonally twisted intermediate state was observed through its excited-state absorption. Bifurcation along pathways towards the ground states of the orange cis and blue trans configurations occurs below the funnel of the conical intersection. The photochromism of the title compound in a very polar solvent such as methanol is observed for the first time.

8.
Opt Express ; 19(4): 3775-87, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21369202

RESUMO

We present the first detailed demonstrations of octave-spanning SC generation in all-normal dispersion photonic crystal fibers (ANDi PCF) in the visible and near-infrared spectral regions. The resulting spectral profiles are extremely flat without significant fine structure and with excellent stability and coherence properties. The key benefit of SC generation in ANDi PCF is the conservation of a single ultrashort pulse in the time domain with smooth and recompressible phase distribution. For the first time we confirm the exceptional temporal properties of the generated SC pulses experimentally and demonstrate their applicability in ultrafast transient absorption spectroscopy. The experimental results are in excellent agreement with numerical simulations, which are used to illustrate the SC generation dynamics by self-phase modulation and optical wave breaking. To our knowledge, we present the broadest spectra generated in the normal dispersion regime of an optical fiber.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...