Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 84(9): 2530-2540, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34810329

RESUMO

Co-digestion of thermally pretreated sewage sludge with food waste is an innovative strategy that could improve the balance and availability of nutrients needed to increase the efficiency of anaerobic digestion in terms of biogas production. In this context, the aim of this research was to evaluate the impact of different proportions of sewage sludge/food waste in laboratory- and pilot-scale reactors. Special focus was placed on the impact of the variability of food waste composition on the behaviour of the pilot digester. Our results show that by adding 40% of co-substrate, a higher biogas production was possible during laboratory operation. Interestingly, using a co-substrate of variable composition had no negative impact on the reactor's stability at pilot-scale, promoting an increase in biogas production through a more efficient use of organic matter. In both the lab and pilot experiences there was an impact on the amount of nitrogen in the digestate compared to digester operating in monodigestion. This impact is more significant as the proportion of co-substrate rises. Overall, our results show that co-digestion of thermally pretreated sewage sludge with food waste allows better management of food waste, especially when their composition is variable.


Assuntos
Eliminação de Resíduos , Esgotos , Anaerobiose , Biocombustíveis/análise , Reatores Biológicos , Digestão , Alimentos , Laboratórios , Metano
2.
Water Res ; 175: 115654, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32146207

RESUMO

The aim of this study is to test the capability of the anaerobic digestion model n1 (ADM1) to reproduce data from full-scale digesters operated in a wastewater resource recovery facility (WRRF) where both thermal hydrolysis and codigestion with industrial waste are carried out. Furthermore, the potential uses of the model in a WRRF are also described, with particular relevance for plant engineers/operators. The model capability was calibrated and validated with data from full-scale digesters from the Mapocho-Trebal WRRF (Biofactoría) in Santiago, Chile. A success simulation rate, defined as the percentage of experimental values of a certain variable that lies within the simulation band given by a simulation tolerance established by the user/operator, was established to test the capability of the model as objectively as possible. Regarding the full-scale digester fed with thermally pretreated mixed sludge, success rates of 65% for biogas production and 60-100% for other variables were achieved. Regarding the full-scale digester in codigestion mode, the model had a success rate of approximately 60% for predicting the biogas flow for the whole evaluation period, while for the other variables, values between 70 and 100% were attained. The lowest success rates were observed for the volatile fatty acid (VFA) concentration in the digestate. Despite the lack of available data and the number of assumptions that had to be made, the model was demonstrated to be capable of reproducing the behavior of the full-scale reactors. A proper, up-to-date, calibrated and validated model can aid in the decision-making process in a WRRF, for instance, in determining some unmeasured inlet conditions, in improving the resilience of the process and in managing the incorporation of a new cosubstrate into the plant, among others.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Anaerobiose , Animais , Reatores Biológicos , Simulação por Computador , Hidrólise , Metano , Esgotos
3.
Water Sci Technol ; 80(2): 387-396, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31537775

RESUMO

Anaerobic mono-digestion and co-digestion are nowadays widely used in wastewater treatment plants (WWTP). However, the data processing of the conventional biochemical potential test (BMP) carried out to assess potential substrates should be enhanced to reduce the uncertainty of the results. In this study, two methodologies aiming to improve the data processing in anaerobic digestion studies were proposed. The methodologies aimed at the estimation of synergy in anaerobic co-digestion of organic waste and the standardization of the BMP test results by considering the activity of the inoculums under mono-digestion conditions. Both methodologies comprise the application of the Gompertz equation. For the first methodology, four cosubstrates and two types of substrates were used. Regarding synergy estimation, the cosubstrates dairy whey and grease sludge had an impact on the degradation kinetic. In regard to the second methodology, the results indicate that the activity of the inoculums exerts an influence on the BMP analysis, and it should be considered. This can be meaningful when comparing results among studies when different inoculums are used or even for studies where the same inoculum is used but it is taken at different reactor operational moments.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos , Anaerobiose , Biocombustíveis , Esgotos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...