Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Se Pu ; 36(12): 1311-1322, 2018 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-30574711

RESUMO

Long-term indoor-air limit for formaldehyde stipulated by the European Commission is 1 µg/m3, while the World Health Organization has set a threshold of 100 µg/m3 that should not be exceeded for more than 30 min. To date, however, only a few analytical techniques have been developed that can be used to detect formaldehyde at these very restrictive limits. Thus, there is a need to develop for comprehensive methods for analyzing airborne formaldehyde and other carbonyl pollutants in the ambient environment. The aim of this study is to develop a highly sensitive online automated preconcentration gas chromatographic method using large-volume injection with a programmed temperature vaporization injector for the analysis of airborne formaldehyde and ten other carbonyl compounds. The influence of several parameters, such as the maximum volume injected, programmed temperature vaporization transfer time and temperature, carrier gas flow rate, and type of packing material was investigated. After optimization, highly satisfactory results in terms of the absolute and methodological detection limits were achieved, i. e. as low as the µg/m3 level for all the carbonyl pollutants studied. A commercially available sampler, originally designed for active sampling, was evaluated as a passive sampling device; this optimized technique was applied to monitor the concentrations of carbonyl pollutants in the indoor air of ten public buildings in Florence. The strength of this methodology lies both in the low detection limits reached in the simultaneous analysis of a wide group of 2,4-dinitrophenylhydrazine derivatives, and the potential adaptability of this method to other gas chromatographic applications to achieve lower sensitivity.

2.
Molecules ; 23(8)2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050023

RESUMO

High-throughput screening of samples is the strategy of choice to detect occupational exposure biomarkers, yet it requires a user-friendly apparatus that gives relatively prompt results while ensuring high degrees of selectivity, precision, accuracy and automation, particularly in the preparation process. Miniaturization has attracted much attention in analytical chemistry and has driven solvent and sample savings as easier automation, the latter thanks to the introduction on the market of the three axis autosampler. In light of the above, this contribution describes a novel user-friendly solid-phase microextraction (SPME) off- and on-line platform coupled with gas chromatography and triple quadrupole-mass spectrometry to determine urinary metabolites of polycyclic aromatic hydrocarbons 1- and 2-hydroxy-naphthalene, 9-hydroxy-phenanthrene, 1-hydroxy-pyrene, 3- and 9-hydroxy-benzoantracene, and 3-hydroxy-benzo[a]pyrene. In this new procedure, chromatography's sensitivity is combined with the user-friendliness of N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide on-fiber SPME derivatization using direct immersion sampling; moreover, specific isotope-labelled internal standards provide quantitative accuracy. The detection limits for the seven OH-PAHs ranged from 0.25 to 4.52 ng/L. Intra-(from 2.5 to 3.0%) and inter-session (from 2.4 to 3.9%) repeatability was also evaluated. This method serves to identify suitable risk-control strategies for occupational hygiene conservation programs.


Assuntos
Ensaios de Triagem em Larga Escala , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Microextração em Fase Sólida , Humanos , Limite de Detecção , Hidrocarbonetos Policíclicos Aromáticos/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...