Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biomedicines ; 12(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38255314

RESUMO

Dysregulated metabolic dynamics are evident in both cancer and diabetes, with metabolic alterations representing a facet of the myriad changes observed in these conditions. This review delves into the commonalities in metabolism between cancer and type 2 diabetes (T2D), focusing specifically on the contrasting roles of oxidative phosphorylation (OXPHOS) and glycolysis as primary energy-generating pathways within cells. Building on earlier research, we explore how a shift towards one pathway over the other serves as a foundational aspect in the development of cancer and T2D. Unlike previous reviews, we posit that this shift may occur in seemingly opposing yet complementary directions, akin to the Yin and Yang concept. These metabolic fluctuations reveal an intricate network of underlying defective signaling pathways, orchestrating the pathogenesis and progression of each disease. The Warburg phenomenon, characterized by the prevalence of aerobic glycolysis over minimal to no OXPHOS, emerges as the predominant metabolic phenotype in cancer. Conversely, in T2D, the prevailing metabolic paradigm has traditionally been perceived in terms of discrete irregularities rather than an OXPHOS-to-glycolysis shift. Throughout T2D pathogenesis, OXPHOS remains consistently heightened due to chronic hyperglycemia or hyperinsulinemia. In advanced insulin resistance and T2D, the metabolic landscape becomes more complex, featuring differential tissue-specific alterations that affect OXPHOS. Recent findings suggest that addressing the metabolic imbalance in both cancer and diabetes could offer an effective treatment strategy. Numerous pharmaceutical and nutritional modalities exhibiting therapeutic effects in both conditions ultimately modulate the OXPHOS-glycolysis axis. Noteworthy nutritional adjuncts, such as alpha-lipoic acid, flavonoids, and glutamine, demonstrate the ability to reprogram metabolism, exerting anti-tumor and anti-diabetic effects. Similarly, pharmacological agents like metformin exhibit therapeutic efficacy in both T2D and cancer. This review discusses the molecular mechanisms underlying these metabolic shifts and explores promising therapeutic strategies aimed at reversing the metabolic imbalance in both disease scenarios.

2.
Surg Obes Relat Dis ; 16(12): 1910-1918, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32861644

RESUMO

BACKGROUND: Bariatric surgery is well established as a treatment for obesity and associated complications. This procedure improves metabolic homeostasis through changes in energy expenditure. We hypothesized that sleeve gastrectomy (SG) improves metabolic homeostasis by modulating energy expenditure and enhancing thermogenesis through increasing the expression level of meteorin-like protein (METRNL) and fibronectin type III domain-containing protein 5 (FNDC5/Irisin) through uncoupling proteins 1/2/3 (UCP1, UCP2, and UCP3). OBJECTIVES: To study the effect of SG on the levels of proteins involved in thermogenesis process. SETTING: Laboratory rats at Kuwait University. METHODS: Male Sprague-Dawley rats, aged 4 to 5 weeks, were divided into 2 groups, control (n = 11) and diet-induced obesity (DIO) (n = 22). The control group was fed regular rat chow ad libitum, whereas the DIO group was fed cafeteria diet "high-fat/carbohydrate diet" ad libitum. At 21 weeks, rats in the DIO group that weighed 20% more than the control group animals underwent surgery. These rats were randomly subdivided into Sham and SG operation groups. Gene expression was evaluated, and enzyme-linked immunosorbent assays were employed to assess the changes in gene and protein levels in tissue and circulation. RESULTS: The protein expression data revealed an increase in METRNL levels in the muscles and white adipose tissue of SG animals. METRNL level in circulation in SG animals was reduced compared with control and Sham rats. The level of Irisin increased in the muscle of SG animals compared with the control and Sham group animals; however, a decrease in Irisin level was observed in the white adipose tissue and brown adipose tissue of SG animals compared with controls. Gene expression analysis revealed decreased METRNL levels in muscle tissues in the SG group compared with the control group animals. Increased expression of FNDC5 (Irisin), UCP2, and UCP3 in the muscle tissue of SG animals was also observed. Furthermore, the levels of UCP1, UCP2, UCP3, and METRNL in the brown adipose tissue of SG animals were upregulated. No significant alteration in the gene expression of Irisin was observed in brown adipose tissue. CONCLUSIONS: Sleeve gastrectomy induces weight loss through complex mechanisms that may include browning of fat.


Assuntos
Tecido Adiposo Marrom , Obesidade , Tecido Adiposo/metabolismo , Animais , Dieta , Fibronectinas/genética , Fibronectinas/metabolismo , Gastrectomia , Kuweit , Masculino , Proteínas de Desacoplamento Mitocondrial , Músculos/metabolismo , Obesidade/genética , Obesidade/cirurgia , Ratos , Ratos Sprague-Dawley
3.
Mol Ther Methods Clin Dev ; 18: 321-327, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32665962

RESUMO

The mechanism for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection requires the binding of the virus to the angiotensin-converting enzyme 2 (ACE2) receptor, well-known for its role in counteracting ACE. ACE2 is involved in modulating blood pressure and establishing blood pressure homeostasis. Recently, a critical debatable question has arisen whether using antihypertensive medications will have a favorable impact on people infected with SARS-CoV-2 or a deleterious one, mainly because angiotensin-converting enzyme inhibitor (ACEI) and angiotensin-receptor blocker (ARB) therapy can modulate the expression of ACE2 protein. The concern is that the use of ACEIs and ARBs will increase the expression of ACE2 and increase patient susceptibility to viral host cell entry and propagation. On the other hand, several genetic association studies have examined the relationship between ACE2 genetic variants and the risk of developing hypertension in different ethnic populations. In this review, we discuss the ongoing arguments in the literature about ACE2's role in mortality rate among coronavirus disease 2019 (COVID-19) patients comorbid with hypertension and critically evaluate the current debate about the usage or discontinuation of ACEI/ARB antihypertensive drugs. Moreover, we explore the two opposing roles that ACE2 genetic variants might be playing in COVID-19 by reducing ACE2 receptor effectiveness and mitigating SARS-CoV-2 infectivity.

4.
J Enzyme Inhib Med Chem ; 35(1): 1471-1482, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32635785

RESUMO

Oxazolidinone hydroxamic acid derivatives were synthesised and evaluated for inhibitory activity against leukotriene (LT) biosynthesis in three in vitro cell-based test systems and on direct inhibition of recombinant human 5-lipoxygenase (5-LO). Thirteen of the 19 compounds synthesised were considered active ((50% inhibitory concentration (IC50) ≤ 10 µM in two or more test systems)). Increasing alkyl chain length on the hydroxamic acid moiety enhanced activity and morpholinyl-containing derivatives were more active than N-acetyl-piperizinyl derivatives. The IC50 values in cell-based assay systems were comparable to those obtained by direct inhibition of 5-LO activity, confirming that the compounds are direct inhibitors of 5-LO. Particularly, compounds PH-249 and PH-251 had outstanding potencies (IC50 < 1 µM), comparable to that of the prototype 5-LO inhibitor, zileuton. Pronounced in vivo activity was demonstrated in zymosan-induced peritonitis in mice. These novel oxazolidinone hydroxamic acid derivatives are, therefore, potent 5-LO inhibitors with potential application as anti-allergic and anti-inflammatory agents.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Araquidonato 5-Lipoxigenase/metabolismo , Ácidos Hidroxâmicos/farmacologia , Inflamação/tratamento farmacológico , Inibidores de Lipoxigenase/farmacologia , Oxazolidinonas/farmacologia , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Linhagem Celular , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/química , Inflamação/induzido quimicamente , Inflamação/metabolismo , Leucotrieno B4/antagonistas & inibidores , Leucotrieno B4/biossíntese , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Oxazolidinonas/síntese química , Oxazolidinonas/química , Relação Estrutura-Atividade , Zimosan
5.
Methods Mol Biol ; 724: 161-80, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21370013

RESUMO

Whole genome amplification systems were developed to meet the increasing research demands on DNA resources and to avoid DNA shortage. The technology enables amplification of nanogram amounts of DNA into microgram quantities and is increasingly used in the amplification of DNA from multiple origins such as blood, fresh frozen tissue, formalin-fixed paraffin-embedded tissues, saliva, buccal swabs, bacteria, and plant and animal sources. This chapter focuses on the use of GenomePlex(®) tissue Whole Genome Amplification Kit, to amplify DNA directly from archived tissue. In addition, this chapter documents our unique experience with the utilization of GenomePlex(®) amplified DNA using several molecular techniques including metaphase Comparative Genomic Hybridization, array Comparative Genomic Hybridization, and real-time quantitative polymerase chain reaction assays. GenomePlex(®) is a registered trademark of Rubicon Genomics Incorporation.


Assuntos
DNA/isolamento & purificação , Formaldeído/química , Genoma Humano/genética , Inclusão em Parafina/métodos , Reação em Cadeia da Polimerase/métodos , Fixação de Tecidos/métodos , Alelos , Hibridização Genômica Comparativa , Eletroforese em Gel de Ágar , Dosagem de Genes/genética , Humanos , Hibridização in Situ Fluorescente , Microdissecção , Microscopia , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes , Extratos de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...