Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Eng Technol ; 13(5): 673-684, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35106721

RESUMO

PURPOSE: The significantly higher incidence of aneurysms in patients with arteriovenous malformations (AVMs) suggests a strong hemodynamic relationship between these lesions. The presence of an AVM alters hemodynamics in proximal vessels by drastically changing the distal resistance, thus affecting intra-aneurysmal flow. This study discusses the challenges associated with patient-specific modeling of aneurysms in the presence of AVMs. METHODS: We explore how the presence of a generic distal AVM affects upstream aneurysms by examining the relationship between distal resistance and aneurysmal wall shear stress using physiologically realistic estimates for the influence of the AVM on hemodynamics. Using image-based computational models of aneurysms and surrounding vasculature, aneurysmal wall-shear stress is calculated for a range of distal resistances corresponding to the presence of AVMs of various sizes and compared with a control case representing the absence of an AVM. RESULTS: In the patient cases considered, the alteration in aneurysmal wall shear stress due to the presence of an AVM is considerable, as much as 19 times the base case wall shear stress. Furthermore, the relationship between aneurysmal wall shear stress and distal resistance is shown to be highly geometry-dependent and nonlinear. In most cases, the range of physiologically realistic possibilities for AVM-related distal resistance are so large that patient-specific flow measurements are necessary for meaningful predictions of wall shear stress. CONCLUSIONS: The presented work offers insight on the impact of distal AVMs on aneurysmal wall shear stress using physiologically realistic computational models. Patient-specific modeling of hemodynamics in aneurysms and associated AVMs has great potential for understanding lesion pathogenesis, surgical planning, and assessing the effect of treatment of one lesion relative to another. However, we show that modeling approaches cannot usually meaningfully quantify the impact of AVMs if based solely on imaging data from CT and X-ray angiography, currently used in clinical practice. Based on recent studies, it appears that 4D flow MRI is one promising approach to obtaining meaningful patient-specific flow boundary conditions that improve modeling fidelity.


Assuntos
Aneurisma Intracraniano , Malformações Arteriovenosas Intracranianas , Humanos , Aneurisma Intracraniano/terapia , Malformações Arteriovenosas Intracranianas/complicações , Malformações Arteriovenosas Intracranianas/diagnóstico por imagem , Hemodinâmica/fisiologia , Imageamento por Ressonância Magnética , Estresse Mecânico
2.
J Biomech Eng ; 142(11)2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32529203

RESUMO

Computational modeling of cardiovascular flows is becoming increasingly important in a range of biomedical applications, and understanding the fundamentals of computational modeling is important for engineering students. In addition to their purpose as research tools, integrated image-based computational fluid dynamics (CFD) platforms can be used to teach the fundamental principles involved in computational modeling and generate interest in studying cardiovascular disease. We report the results of a study performed at five institutions designed to investigate the effectiveness of an integrated modeling platform as an instructional tool and describe "best practices" for using an integrated modeling platform in the classroom. Use of an integrated modeling platform as an instructional tool in nontraditional educational settings (workshops, study abroad programs, in outreach) is also discussed. Results of the study show statistically significant improvements in understanding after using the integrated modeling platform, suggesting such platforms can be effective tools for teaching fundamental cardiovascular computational modeling principles.


Assuntos
Hidrodinâmica , Software , Simulação por Computador , Modelos Cardiovasculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...