Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 16(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38922163

RESUMO

The rise in cyanobacterial blooms due to eutrophication and climate change has increased cyanotoxin presence in water. Most current water treatment plants do not effectively remove these toxins, posing a potential risk to public health. This study introduces a water treatment approach using nanostructured beads containing magnetic nanoparticles (MNPs) for easy removal from liquid suspension, coated with different adsorbent materials to eliminate cyanotoxins. Thirteen particle types were produced using activated carbon, CMK-3 mesoporous carbon, graphene, chitosan, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidised cellulose nanofibers (TOCNF), esterified pectin, and calcined lignin as an adsorbent component. The particles' effectiveness for detoxification of microcystin-LR (MC-LR), cylindrospermopsin (CYN), and anatoxin-A (ATX-A) was assessed in an aqueous solution. Two particle compositions presented the best adsorption characteristics for the most common cyanotoxins. In the conditions tested, mesoporous carbon nanostructured particles, P1-CMK3, provide good removal of MC-LR and Merck-activated carbon nanostructured particles, P9-MAC, can remove ATX-A and CYN with high and fair efficacy, respectively. Additionally, in vitro toxicity of water treated with each particle type was evaluated in cultured cell lines, revealing no alteration of viability in human renal, neuronal, hepatic, and intestinal cells. Although further research is needed to fully characterise this new water treatment approach, it appears to be a safe, practical, and effective method for eliminating cyanotoxins from water.


Assuntos
Toxinas Bacterianas , Toxinas de Cianobactérias , Toxinas Marinhas , Microcistinas , Purificação da Água , Toxinas de Cianobactérias/química , Humanos , Microcistinas/toxicidade , Microcistinas/química , Microcistinas/isolamento & purificação , Toxinas Marinhas/toxicidade , Toxinas Marinhas/química , Toxinas Marinhas/isolamento & purificação , Purificação da Água/métodos , Adsorção , Toxinas Bacterianas/toxicidade , Toxinas Bacterianas/química , Toxinas Bacterianas/isolamento & purificação , Alcaloides/química , Alcaloides/toxicidade , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Tropanos/química , Tropanos/toxicidade , Tropanos/isolamento & purificação , Nanoestruturas/química , Nanoestruturas/toxicidade , Uracila/análogos & derivados , Uracila/química , Uracila/toxicidade , Cianobactérias/química , Sobrevivência Celular/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química
2.
Heliyon ; 10(3): e25338, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38356596

RESUMO

Paralytic shellfish poisoning is a foodborne illness that typically derive from the consumption of shellfish contaminated with saxitoxin-group of toxins produced by dinoflagellates of the genus Gymnodinium, Alexandrium and Pyrodinium. N-sulfocarbamoyl, carbamate and dicarbamoyl are the most abundant. In 2007 and 2008 some episodes of PSP occurred in Angola where there is not monitoring program for shellfish contamination with marine biotoxins. Therefore, ten samples extracted from Semele proficua from Luanda Bay and Senilia senilis from Mussulo Bay, were analyzed by HPLC finding saxitoxin, decarbamoylsaxitoxin and other three compounds that have an unusual profile different to the known hydrophilic PSP toxins were found in different amounts and combinations. These new compounds were not autofluorescent, and they presented much stronger response after peroxide oxidation than after periodate oxidation. The compounds appear as peaks eluted at 2.5 and 5.6 min after periodate oxidation and 8.2 min after peroxide oxidation. Electrophysiological studies revealed that none of the three unknown compounds had effect at cellular level by decreasing the maximum peak inward sodium currents by blocking voltage-gated sodium channels. Thus, not contributing to PSP intoxication. The presence in all samples of saxitoxin-group compounds poses a risk to human health and remarks the need to further explore the presence of new compounds that contaminate seafood, investigating their activity and developing monitoring programs.

3.
Mar Drugs ; 19(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430011

RESUMO

Okadaic acid (OA) and its main structural analogs dinophysistoxin-1 (DTX1) and dinophysistoxin-2 (DTX2) are marine lipophilic phycotoxins distributed worldwide that can be accumulated by edible shellfish and can cause diarrheic shellfish poisoning (DSP). In order to study their toxicokinetics, mice were treated with different doses of OA, DTX1, or DTX2 and signs of toxicity were recorded up to 24 h. Toxin distribution in the main organs from the gastrointestinal tract was assessed by liquid chromatography-mass spectrometry (LC/MS/MS) analysis. Our results indicate a dose-dependency in gastrointestinal absorption of these toxins. Twenty-four hours post-administration, the highest concentration of toxin was detected in the stomach and, in descending order, in the large intestine, small intestine, and liver. There was also a different toxicokinetic pathway between OA, DTX1, and DTX2. When the same toxin doses are compared, more OA than DTX1 is detected in the small intestine. OA and DTX1 showed similar concentrations in the stomach, liver, and large intestine tissues, but the amount of DTX2 is much lower in all these organs, providing information on DSP toxicokinetics for human safety assessment.


Assuntos
Toxinas Marinhas/farmacocinética , Intoxicação por Frutos do Mar , Animais , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Feminino , Intestinos , Toxinas Marinhas/toxicidade , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Ácido Okadáico/análogos & derivados , Ácido Okadáico/farmacocinética , Frutos do Mar/análise , Estômago , Distribuição Tecidual , Toxicocinética
4.
Cell Physiol Biochem ; 49(2): 743-757, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30176657

RESUMO

BACKGROUND/AIMS: Okadaic acid (OA) and the structurally related compounds dinophysistoxin-1 (DTX1) and dinophysistoxin-2 (DTX2) are marine phycotoxins that cause diarrheic shellfish poisoning (DSP) in humans due to ingestion of contaminated shellfish. In order to guarantee consumer protection, the regulatory authorities have defined the maximum level of DSP toxins as 160 µg OA equivalent kg-1 shellfish meat. For risk assessment and overall toxicity determination, knowledge of the relative toxicities of each analogue is required. In absence of enough information from human intoxications, oral toxicity in mice is the most reliable data for establishing Toxicity Equivalence Factors (TEFs). METHODS: Toxins were administered to mice by gavage, after that the symptomatology and mice mortality was registered over a period of 24 h. Organ damage data were collected at necropsy and transmission electron microscopy (TEM) was used for ultrastructural studies. Toxins in urine, feces and blood were analyzed by HPLC-MS/MS. The evaluation of in vitro potencies of OA, DTX1 and DTX2 was performed by the protein phosphatase 2A (PP2A) inhibition assay. RESULTS: Mice that received DSP toxins by gavage showed diarrhea as the main symptom. Those toxins caused similar gastrointestinal alterations as well as intestine ultrastructural changes. However, DSP toxins did not modify tight junctions to trigger diarrhea. They had different toxicokinetics and toxic potency. The lethal dose 50 (LD50) was 487 µg kg-1 bw for DTX1, 760 µg kg-1 bw for OA and 2262 µg kg-1 bw for DTX2. Therefore, the oral TEF values are: OA = 1, DTX1 = 1.5 and DTX2 = 0.3. CONCLUSION: This is the first comparative study of DSP toxins performed with accurate well-characterized standards and based on acute toxicity data. Results confirmed that DTX1 is more toxic than OA by oral route while DTX2 is less toxic. Hence, the current TEFs based on intraperitoneal toxicity should be modified. Also, the generally accepted toxic mode of action of this group of toxins needs to be reevaluated.


Assuntos
Peso Corporal/efeitos dos fármacos , Ácido Okadáico/toxicidade , Piranos/toxicidade , Administração Oral , Animais , Cromatografia Líquida de Alta Pressão , Feminino , Coração/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/ultraestrutura , Camundongos , Miocárdio/ultraestrutura , Ácido Okadáico/análise , Ácido Okadáico/urina , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/metabolismo , Piranos/análise , Piranos/urina , Estômago/efeitos dos fármacos , Estômago/patologia , Espectrometria de Massas em Tandem , Testes de Toxicidade
5.
Food Chem ; 269: 166-172, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30100420

RESUMO

Although paralytic shellfish toxins (PSTs) have traditionally been analyzed by liquid chromatography with either pre- or post-column derivatization, and these methods have been validated successfully through inter-laboratory studies, mass spectrometry methods have also been described in literature for use in monitoring programs. However, methods using liquid chromatography coupled with mass spectrometry (LC-MS) need to be improved in terms of sensitivity, analyte recovery and retention time stability because of undesirable matrix effects. Furthermore, tetrodotoxin (TTX) has been found in northern European bivalves, so it is important to analyze TTX compounds alongside PSTs because characteristics of their toxicity are similar. This paper describes, for the first time, a chemical method that allows determination of PSTs, both hydrophilic and hydrophobic, alongside TTX and its analogue 4,9-anhydro tetrodotoxin (4,9-anhTTX) with LC-MS/MS using a Hypercarb® column. The method was validated for 13 hydrophilic PSTs and TTXs and was able to discriminate six hydrophobic PSTs in 20 min. The method was developed for four shellfish matrices: mussel (Mytillus galloprovincialis), clam (Ruditapes decussatus), scallop (Pecten maximus) and oyster (Ostrae edulis). Clean-up procedure used in this work allowed us to obtain good results for validation parameters for both PSTs and TTXs. No standards were available so strains of Gymnodinium catenatum (G. catenatum) were used instead.


Assuntos
Cromatografia Líquida/métodos , Toxinas Marinhas/análise , Espectrometria de Massas em Tandem/métodos , Tetrodotoxina/análise , Animais , Carbono/química , Grafite/química , Humanos , Frutos do Mar , Intoxicação por Frutos do Mar/prevenção & controle
6.
Toxicon ; 129: 28-35, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28209475

RESUMO

Different shellfish samples were analyzed by Pre- and Post-Column Oxidation Liquid Chromatography to compare the toxins profiles and get information about the degree of accomplishment of both methods. Comparison of the results obtained, the linear correlation coefficient (r2 = 0.94) and the paired t test (two tails, α = 0.05), indicated that there were not significant differences between both sets of data. Nevertheless, important differences related to toxins profiles were found: it was remarkable the difference in results for both Gonyautoxins 1 and 4 and Decarbamoylgonyautoxins 2 and 3, depending on the method of choice, due to an overestimation in the Pre-Column method. It was necessary to modify the elution conditions in the Post-Column method to avoid the interference of matrix peaks at retention times closer to the retention times of the calibrants, mostly when working with oyster and scallop matrices, although it is a good method to use routinely.


Assuntos
Cromatografia Líquida de Alta Pressão , Toxinas Marinhas/análise , Ostreidae , Frutos do Mar , Animais , Limite de Detecção , Saxitoxina/análogos & derivados , Saxitoxina/análise , Intoxicação por Frutos do Mar
7.
Toxins (Basel) ; 8(7)2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27367728

RESUMO

Paralytic shellfish toxins (PST) traditionally have been analyzed by liquid chromatography with either pre- or post-column derivatization and always with a silica-based stationary phase. This technique resulted in different methods that need more than one run to analyze the toxins. Furthermore, tetrodotoxin (TTX) was recently found in bivalves of northward locations in Europe due to climate change, so it is important to analyze it along with PST because their signs of toxicity are similar in the bioassay. The methods described here detail a new approach to eliminate different runs, by using a new porous graphitic carbon stationary phase. Firstly we describe the separation of 13 PST that belong to different groups, taking into account the side-chains of substituents, in one single run of less than 30 min with good reproducibility. The method was assayed in four shellfish matrices: mussel (Mytillus galloprovincialis), clam (Pecten maximus), scallop (Ruditapes decussatus) and oyster (Ostrea edulis). The results for all of the parameters studied are provided, and the detection limits for the majority of toxins were improved with regard to previous liquid chromatography methods: the lowest values were those for decarbamoyl-gonyautoxin 2 (dcGTX2) and gonyautoxin 2 (GTX2) in mussel (0.0001 mg saxitoxin (STX)·diHCl kg(-1) for each toxin), decarbamoyl-saxitoxin (dcSTX) in clam (0.0003 mg STX·diHCl kg(-1)), N-sulfocarbamoyl-gonyautoxins 2 and 3 (C1 and C2) in scallop (0.0001 mg STX·diHCl kg(-1) for each toxin) and dcSTX (0.0003 mg STX·diHCl kg(-1) ) in oyster; gonyautoxin 2 (GTX2) showed the highest limit of detection in oyster (0.0366 mg STX·diHCl kg(-1)). Secondly, we propose a modification of the method for the simultaneous analysis of PST and TTX, with some minor changes in the solvent gradient, although the detection limit for TTX does not allow its use nowadays for regulatory purposes.


Assuntos
Bivalves/química , Cromatografia Líquida de Alta Pressão/instrumentação , Fluorometria , Contaminação de Alimentos , Grafite/química , Paralisia/induzido quimicamente , Saxitoxina/análogos & derivados , Alimentos Marinhos/análise , Intoxicação por Frutos do Mar , Tetrodotoxina/análise , Animais , Cromatografia Líquida de Alta Pressão/normas , Fluorometria/normas , Limite de Detecção , Mytilus/química , Ostrea/química , Oxirredução , Pecten/química , Pectinidae/química , Porosidade , Reprodutibilidade dos Testes , Saxitoxina/efeitos adversos , Saxitoxina/análise , Alimentos Marinhos/efeitos adversos , Tetrodotoxina/efeitos adversos
8.
Toxins (Basel) ; 8(7)2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27399774

RESUMO

Current regulation for marine toxins requires a monitoring method based on mass spectrometric analysis. This method is pre-targeted, hence after searching for pre-assigned masses, it identifies those compounds that were pre-defined with available calibrants. Therefore, the scope for detecting novel toxins which are not included in the monitoring protocol are very limited. In addition to this, there is a poor comprehension of the toxicity of some marine toxin groups. Also, the validity of the current approach is questioned by the lack of sufficient calibrants, and by the insufficient coverage by current legislation of the toxins reported to be present in shellfish. As an example, tetrodotoxin, palytoxin analogs, or cyclic imines are mentioned as indicators of gaps in the system that require a solid comprehension to assure consumers are protected.


Assuntos
Cromatografia Líquida/métodos , Contaminação de Alimentos , Toxinas Marinhas/análise , Espectrometria de Massas/métodos , Alimentos Marinhos/análise , Calibragem , Cromatografia Líquida/normas , Qualidade de Produtos para o Consumidor , Humanos , Toxinas Marinhas/efeitos adversos , Espectrometria de Massas/normas , Padrões de Referência , Reprodutibilidade dos Testes , Medição de Risco , Alimentos Marinhos/efeitos adversos
9.
Toxins (Basel) ; 7(5): 1779-807, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-26008234

RESUMO

During official shellfish control for the presence of marine biotoxins in Greece in year 2012, a series of unexplained positive mouse bioassays (MBA) for lipophilic toxins with nervous symptomatology prior to mice death was observed in mussels from Vistonikos Bay-Lagos, Rodopi. This atypical toxicity coincided with (a) absence or low levels of regulated and some non-regulated toxins in mussels and (b) the simultaneous presence of the potentially toxic microalgal species Prorocentrum minimum at levels up to 1.89 × 103 cells/L in the area's seawater. Further analyses by different MBA protocols indicated that the unknown toxin was hydrophilic, whereas UPLC-MS/MS analyses revealed the presence of tetrodotoxins (TTXs) at levels up to 222.9 µg/kg. Reviewing of official control data from previous years (2006-2012) identified a number of sample cases with atypical positive to asymptomatic negative MBAs for lipophilic toxins in different Greek production areas, coinciding with periods of P. minimum blooms. UPLC-MS/MS analysis of retained sub-samples from these cases revealed that TTXs were already present in Greek shellfish since 2006, in concentrations ranging between 61.0 and 194.7 µg/kg. To our knowledge, this is the earliest reported detection of TTXs in European bivalve shellfish, while it is also the first work to indicate a possible link between presence of the toxic dinoflagellate P. minimum in seawater and that of TTXs in bivalves. Confirmed presence of TTX, a very heat-stable toxin, in filter-feeding mollusks of the Mediterranean Sea, even at lower levels to those inducing symptomatology to humans, indicates that this emerging risk should be seriously taken into account by the EU to protect the health of shellfish consumers.


Assuntos
Bivalves , Dinoflagellida , Contaminação de Alimentos/análise , Frutos do Mar , Tetrodotoxina/análise , Animais , Cromatografia Líquida , Monitoramento Ambiental , Trato Gastrointestinal/química , Grécia , Mar Mediterrâneo , Camundongos , Água do Mar/análise , Espectrometria de Massas em Tandem , Tetrodotoxina/toxicidade , Poluentes da Água/análise , Poluentes da Água/toxicidade
10.
Toxins (Basel) ; 7(4): 1324-40, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25884908

RESUMO

The separation of PSP toxins using liquid chromatography with a post-column oxidation fluorescence detection method was performed with different matrices. The separation of PSP toxins depends on several factors, and it is crucial to take into account the presence of interfering matrix peaks to produce a good separation. The matrix peaks are not always the same, which is a significant issue when it comes to producing good, reliable results regarding resolution and toxicity information. Different real shellfish matrices (mussel, scallop, clam and oyster) were studied, and it was seen that the interference is not the same for each individual matrix. It also depends on the species, sampling location and the date of collection. It was proposed that separation should be accomplished taking into account the type of matrix, as well as the concentration of heptane sulfonate in both solvents, since the mobile phase varies regarding the matrix. Scallop and oyster matrices needed a decrease in the concentration of heptane sulfonate to separate GTX4 from matrix peaks, as well as dcGTX3 for oysters, with a concentration of 6.5 mM for solvent A and 6.25 mM for solvent B. For mussel and clam matrices, interfering peaks are not as large as they are in the other group, and the heptane sulfonate concentration was 8.25 mM for both solvents. Also, for scallops and oysters, matrix interferences depend not only on the sampling site but also on the date of collection as well as the species; for mussels and clams, differences are noted only when the sampling site varies.


Assuntos
Bivalves , Toxinas Marinhas/isolamento & purificação , Frutos do Mar , Alcanossulfonatos/química , Animais , Cromatografia Líquida , Fluorescência , Toxinas Marinhas/química , Oxirredução , Solventes/química
11.
Chem Res Toxicol ; 24(7): 1153-7, 2011 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-21619049

RESUMO

The establishment of toxicity equivalent factors to develop alternative methods to animal bioassays for marine-toxin detection is an urgent need in the field of phycotoxin research. Paralytic shellfish poisoning (PSP) is one of the most severe forms of food poisoning. The toxins responsible for this type of poisoning are highly toxic natural compounds produced by dinoflagellates, which bind to voltage-gated Na(+) channels causing the blockade of action potential propagation. In spite of the fact that several standards of PSP toxins are currently commercially available, there is scarcity of data on the biological activity of these toxins, a fact that limits the calculation of their toxicity equivalent factors. We have evaluated the potency of the commercial PSP toxin standards for their ability to inhibit voltage-dependent sodium currents in cultured neuronal cells by electrophysiological measurements. The in vitro potencies of the PSP toxin standards as indicated by their IC(50) values were in the order Neosaxitoxin (NeoSTX) > decarbamoylsaxitoxin (dcSTX) > saxitoxin (STX) > gonyautoxin 1,4 (GTX1,4) > decarbamoylneosaxitoxin (dcNeoSTX) > gonyautoxin 2,3 (GTX2,3) > decarbamoylgonyautoxin 2,3 (dcGTX2,3) > gonyautoxin 5 (GTX5) > N-sulfocarbamoyl-gonyautoxin-2 and -3 (C1,2). The data obtained in this in vitro analysis correlated well with their previously reported toxicity values.


Assuntos
Toxinas Marinhas/toxicidade , Neurônios/efeitos dos fármacos , Frutos do Mar/toxicidade , Testes de Toxicidade/métodos , Animais , Bioensaio , Células Cultivadas , Potenciais da Membrana , Camundongos , Neurônios/citologia , Saxitoxina/análogos & derivados , Saxitoxina/toxicidade , Intoxicação por Frutos do Mar
12.
Biomed Chromatogr ; 24(8): 878-86, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20087843

RESUMO

The aim of this work was to develop a method to purify large amounts of spirolide toxins from cultures of Alexandrium ostenfeldii. The dinoflagellates grew in batches under controlled conditions of salinity, light and temperature. Analysis of the cultures demonstrated the existence of neurotoxins associated with paralytic shellfish poisoning toxins and two spirolides, 13-desmethyl spirolide C and 13,19-didesmethyl spirolide C. The protocol designed presents several stages of extraction, separation between spirolides and paralytic shellfish poisoning toxins, and cleanup in solid-phase extraction. Finally, the purification of spirolides was conducted by a preparative high-performance liquid chromatography system coupled to a mass spectrometer detector. The purity and the amount of both toxins in each step was monitored by analytical liquid chromatographic-mass spectrometry. Large amounts of 13-desMeC, 97% pure, and 13,19-didesMeC, 99% pure, were obtained. A novel and efficient method to separate and purify spirolide toxins from large amounts of phytoplankton is provided. The protocol proposed shows, for the first time, a complete and detailed methodology to separate and purify spirolide toxins with high purity, recovery, repeatability and stability.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Dinoflagellida/química , Toxinas Marinhas/isolamento & purificação , Espectrometria de Massas/métodos , Compostos de Espiro/isolamento & purificação , Toxinas Marinhas/análise , Fitoplâncton/química , Compostos de Espiro/análise
13.
Anal Chem ; 80(5): 1770-6, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18232710

RESUMO

Paralytic shellfish poisoning (PSP) is one of the most severe forms of food poisoning. The toxins responsible for this poisoning are natural compounds, which cause the arrest of action potential propagation by binding to voltage-gated Na+ channels. Several standards for PSP toxins are nowadays commercially available; however, there is not accessible data on the biological activity of the toxins present on this standards and their in vivo toxicity. We have developed an in vitro quantification method for PSP toxins using cultured neurons and compared the potency of the commercial PSP toxin standards in this system with their relative toxicity by mouse bioassay. The in vitro potencies of the PSP toxin standards were saxitoxin (STX) > decarbamoylsaxitoxin (dcSTX) = neosaxitoxin (NeoSTX) > gonyautoxins 1, 4 (GTX1,4) > decarbamoylneosaxitoxin (dcNeoSTX) > gonyautoxins 2, 3 (GTX2,3) > decarbamoylgonyautoxins 2, 3 (dcGTX2,3) > gonyautoxin 5 (GTX5). The data in vitro correlated well with the toxicity values obtained by mouse bioassay. Using this in vitro model we also provide the first data evaluating the potencies of PSP toxins after extraction in acidic pHs, indicating that the toxicity of the sample increases in acidic conditions. This observation correlated well with the chemical transformations undergone by contaminated samples treated in several acidic conditions as corroborated by high-performance liquid chromatography (HPLC) detection of the toxins. Therefore, a variation of 2 units in the pH during PSP extraction may lead to large discrepancies regarding sample lethality during official PSP control in different countries. The results presented here constitute the first comprehensive and revised data on the potency of PSP toxins in vitro and their in vivo toxicity.


Assuntos
Bivalves , Toxinas Marinhas/química , Toxinas Marinhas/toxicidade , Intoxicação por Frutos do Mar , Animais , Bioensaio , Células Cultivadas , Cerebelo/citologia , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Temperatura Alta , Concentração de Íons de Hidrogênio , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Neurônios/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...