Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Dermatol ; 33(6): e15100, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38840387

RESUMO

Skin wound healing is driven by proliferation, migration and differentiation of several cell types that are controlled by the alterations in the gene expression programmes. Brahma Gene 1 (BRG1) (also known as SMARCA4) is a core ATPase in the BRG1 Associated Factors (BAF) ATP-dependent chromatin remodelling complexes that alter DNA-histone interaction in chromatin at the specific gene regulatory elements resulting in increase or decrease of the target gene transcription. Using siRNA mediated suppression of BRG1 during wound healing in a human ex vivo and in vitro (scratch assay) models, we demonstrated that BRG1 is essential for efficient skin wound healing by promoting epidermal keratinocytes migration, but not their proliferation or survival. BRG1 controls changes in the expression of genes associated with gene transcription, response to wounding, cell migration and cell signalling. Altogether, our data revealed that BRG1 play positive role in skin repair by promoting keratinocyte migration and impacting the genes expression programmes associated with cell migration and cellular signalling.


Assuntos
Movimento Celular , DNA Helicases , Queratinócitos , Proteínas Nucleares , Transdução de Sinais , Fatores de Transcrição , Cicatrização , Humanos , Queratinócitos/metabolismo , DNA Helicases/metabolismo , DNA Helicases/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Pele/metabolismo , Proliferação de Células , RNA Interferente Pequeno
2.
Int J Cosmet Sci ; 46(2): 175-198, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37923568

RESUMO

OBJECTIVE: Electrical epilation of unwanted hair is a widely used hair removal method, but it is largely unknown how this affects the biology of human hair follicles (HF) and perifollicular skin. Here, we have begun to explore how mechanical epilation changes selected key biological read-out parameters ex vivo within and around the pilosebaceous unit. METHODS: Human full-thickness scalp skin samples were epilated ex vivo using an electro-mechanical device, organ-cultured for up to 6 days in serum-free, supplemented medium, and assessed at different time points by quantitative (immuno-)histomorphometry for selected relevant read-out parameters in epilated and sham-epilated control samples. RESULTS: Epilation removed most of the hair shafts, often together with fragments of the outer and inner root sheath and hair matrix. This was associated with persistent focal thinning of the HF basal membrane, decreased melanin content of the residual HF epithelium, and increased HF keratinocyte apoptosis, including in the bulge, yet without affecting the number of cytokeratin 15+ HF epithelial stem cells. Sebocyte apoptosis in the peripheral zone was increased, albeit without visibly altering sebum production. Epilation transiently perturbed HF immune privilege, and increased the expression of ICAM-1 in the bulge and bulb mesenchyme, and the number of perifollicular MHC class II+ cells as well as mast cells around the distal epithelium and promoted mast cell degranulation around the suprabulbar and bulbar area. Moreover, compared to controls, several key players of neurogenic skin inflammation, itch, and/or thermosensation (TRPV1, TRPA1, NGF, and NKR1) were differentially expressed in post-epilation skin. CONCLUSION: These data generated in denervated, organ-cultured human scalp skin demonstrate that epilation-induced mechanical HF trauma elicits surprisingly complex biological responses. These may contribute to the delayed re-growth of thinner and lighter hair shafts post-epilation and temporary post-epilation discomfort. Our findings also provide pointers regarding the development of topically applicable agents that minimize undesirable sequelae of epilation.


OBJECTIF: L'épilation électrique des poils indésirables est une méthode d'épilation largement utilisée, mais on ne connaît pas l'ampleur de son effet sur la biologie des follicules pileux humains (FP) et de la peau périfolliculaire. Dans cette étude, nous avons commencé à explorer comment l'épilation mécanique modifie certains paramètres de mesures biologiques clés ex vivo à l'intérieur et autour de l'unité pilo­sébacée. MÉTHODES: Des échantillons de peau du cuir chevelu humain de pleine épaisseur ont été épilés ex vivo à l'aide d'un dispositif électromécanique, cultivés biologiquement pendant un maximum de 6 jours dans un milieu complet sans sérum, et évalués à différents moments par (immuno­)histomorphométrie quantitative pour certains paramètres de mesures pertinents dans des échantillons avec épilation et des échantillons témoins avec épilation simulée. RÉSULTATS: L'épilation a enlevé la plupart des poils, souvent avec des fragments de la gaine de la racine externe et de la matrice pileuse. Cela a été associé à un amincissement focal persistant de la membrane basale du FP, à une diminution de la teneur en mélanine de l'épithélium résiduel du FP et à une augmentation de l'apoptose des kératinocytes du FP, y compris dans la surface arrondie, mais sans affecter le nombre de cellules souches épithéliales du FP positives pour la cytokératine 15. L'apoptose des sébocytes de la zone périphérique était augmentée, sans pour autant altérer visiblement la production de sébum. L'épilation a temporairement perturbé l'immunoprivilège du FP et a augmenté l'expression de l'ICAM­1 dans la surface arrondie et le mésenchyme du bulbe, ainsi que le nombre de cellules périfolliculaires du CMH de classe II et des mastocytes autour de l'épithélium distal, et a favorisé la dégranulation des mastocytes autour de la zone supra­bulbaire et bulbaire. En outre, par rapport aux échantillons témoins, plusieurs acteurs clés de l'inflammation neurogène cutanée, de la démangeaison et/ou de la thermosensation (TRPV1, TRPA1, NGF et NKR1) ont été exprimés de manière différentielle dans la peau après l'épilation. CONCLUSION: Ces données générées dans la peau du cuir chevelu humain dénervée et cultivée biologiquement démontrent que le traumatisme du FP induit par l'épilation mécanique provoque des réponses biologiques étonnamment complexes. Celles­ci peuvent contribuer à retarder la repousse des poils plus fins et plus clairs après l'épilation, et à provoquer une gêne temporaire après l'épilation. Nos résultats fournissent également des pistes concernant le développement d'agents applicables par voie topique qui minimisent les séquelles indésirables de l'épilation.


Assuntos
Folículo Piloso , Remoção de Cabelo , Humanos , Remoção de Cabelo/métodos , Pele/metabolismo , Cabelo , Couro Cabeludo
3.
J Biophotonics ; 16(2): e202200257, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36151769

RESUMO

The efficacy of blue light therapy in dermatology relies on numerous clinical studies. The safety remains a topic of controversy, where potentially deleterious effects were derived from in vitro rather than in vivo experiments. The objectives of this work were (1) to highlight the nuances behind "colors" of blue light, light propagation in tissue and the plurality of modes of action; and (2) to rigorously analyze studies on humans reporting both clinical and histological data from skin biopsies with focus on DNA damage, proliferation, apoptosis, oxidative stress, impact on collagen, elastin, immune cells, and pigmentation. We conclude that blue light therapy is safe for human skin. It induces intriguing skin pigmentation, in part mediated by photoreceptor Opsin-3, which might have a photoprotective effect against ultraviolet irradiation. Future research needs to unravel photochemical reactions and the most effective and safe parameters of blue light in dermatology.


Assuntos
Luz , Fototerapia , Humanos , Pele/efeitos da radiação , Raios Ultravioleta , Apoptose
4.
J Invest Dermatol ; 142(11): 2853-2863.e4, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35691364

RESUMO

Naked mole-rats (NMRs) (Heterocephalus glaber) are long-lived mammals that possess a natural resistance to cancer and other age-related pathologies, maintaining a healthy life span >30 years. In this study, using immunohistochemical and RNA-sequencing analyses, we compare skin morphology, cellular composition, and global transcriptome signatures between young and aged (aged 3‒4 vs. 19‒23 years, respectively) NMRs. We show that similar to aging in human skin, aging in NMRs is accompanied by a decrease in epidermal thickness; keratinocyte proliferation; and a decline in the number of Merkel cells, T cells, antigen-presenting cells, and melanocytes. Similar to that in human skin aging, expression levels of dermal collagens are decreased, whereas matrix metalloproteinase 9 and matrix metalloproteinase 11 levels increased in aged versus in young NMR skin. RNA-sequencing analyses reveal that in contrast to human or mouse skin aging, the transcript levels of several longevity-associated (Igfbp3, Igf2bp3, Ing2) and tumor-suppressor (Btg2, Cdkn1a, Cdkn2c, Dnmt3a, Hic1, Socs3, Sfrp1, Sfrp5, Thbs1, Tsc1, Zfp36) genes are increased in aged NMR skin. Overall, these data suggest that specific features in the NMR skin aging transcriptome might contribute to the resistance of NMRs to spontaneous skin carcinogenesis and provide a platform for further investigations of NMRs as a model organism for studying the biology and disease resistance of human skin.


Assuntos
Proteínas Imediatamente Precoces , Envelhecimento da Pele , Animais , Humanos , Camundongos , Genes Supressores de Tumor , Proteínas de Homeodomínio/genética , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Longevidade/genética , Metaloproteinase 11 da Matriz/genética , Metaloproteinase 11 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Ratos-Toupeira/genética , Ratos-Toupeira/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , RNA/metabolismo , Envelhecimento da Pele/genética , Proteínas Supressoras de Tumor/genética
5.
PLoS One ; 16(9): e0256846, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34506541

RESUMO

More than 300 genetic risk loci have been identified for male pattern baldness (MPB) but little is known about the exact molecular mechanisms through which the associated variants exert their effects on MPB pathophysiology. Here, we aimed at further elucidating the regulatory architecture of the MPB risk locus on chromosome (chr.) 2q35, where we have previously reported a regulatory effect of the MPB lead variant on the expression of WNT10A. A HaploReg database research for regulatory annotations revealed that the association signal at 2q35 maps to a binding site for the transcription factor EBF1, whose gene is located at a second MPB risk locus on chr. 5q33.3. To investigate a potential interaction between EBF1 and WNT10A during MPB development, we performed in vitro luciferase reporter assays as well as expression analyses and immunofluorescence co-stainings in microdissected human hair follicles. Our experiments confirm that EBF1 activates the WNT10A promoter and that the WNT10A/EBF1 interaction is impacted by the allelic expression of the MPB risk allele at 2q35. Expression analyses across different hair cycle phases and immunhistochemical (co)stainings against WNT10A and EBF1 suggest a predominant relevance of EBF1/WNT10A interaction for hair shaft formation during anagen. Based on these findings we suggest a functional mechanism at the 2q35 risk locus for MPB, where an MPB-risk allele associated reduction in WNT10A promoter activation via EBF1 results in a decrease in WNT10A expression that eventually results in anagen shortening, that is frequently observed in MPB affected hair follicles. To our knowledge, this study is the first follow-up study on MPB that proves functional interaction between two MPB risk loci and sheds light on the underlying pathophysiological mechanism at these loci.


Assuntos
Alopecia/genética , Transativadores/genética , Proteínas Wnt/genética , Seguimentos , Regulação da Expressão Gênica , Humanos , Masculino , Regiões Promotoras Genéticas
6.
Exp Dermatol ; 30(2): 271-277, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33141439

RESUMO

Photoactivation of cryptochrome-family proteins by blue light is a well-established reaction regulating physiology of plants, fungi, bacteria, insects and birds, while impact of blue light on cryptochrome synthesis and/or activity in human non-visual cells remains unknown. Here, we show that 453 nm blue light induces cryptochrome 1 (CRY1) accumulation in human keratinocytes and the hair follicle. CRY1 is prominently expressed in the human anagen hair follicle, including epithelial stem cells. Specific silencing of CRY1 promotes catagen, while stimulation of CRY1 by KL001 prolongs anagen ex vivo by altering the expression of genes involved in apoptosis and proliferation. Together, our study identifies a role for CRY1 in sustaining human hair growth. Previously, we demonstrated positive effects of 453 nm blue light on hair growth ex vivo. Taken all together, our study suggests that CRY1 might mediate blue light-dependent positive effects on hair growth.


Assuntos
Criptocromos/metabolismo , Criptocromos/efeitos da radiação , Folículo Piloso/metabolismo , Apoptose/efeitos dos fármacos , Carbazóis/farmacologia , Cor , Criptocromos/genética , Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Cabelo/efeitos dos fármacos , Cabelo/crescimento & desenvolvimento , Folículo Piloso/efeitos da radiação , Humanos , Queratinócitos/metabolismo , Sulfonamidas/farmacologia
7.
Lupus Sci Med ; 6(1): e000328, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31413850

RESUMO

OBJECTIVE: When faced with clinical symptoms of scarring alopecia-the standard diagnostic pathway involves a scalp biopsy which is an invasive and expensive procedure. This project aimed to assess if plucked hair follicles (HFs) containing living epithelial cells can offer a non-invasive approach to diagnosing inflammatory scalp lesions. METHODS: Lesional and non-lesional HFs were extracted from the scalp of patients with chronic discoid lupus erythematosus (CDLE), psoriasis and healthy controls. RNA was isolated from plucked anagen HFs and microarray, as well as quantitative real-time PCR was performed. RESULTS: Here, we report that gene expression analysis of only a small number of HF plucked from lesional areas of the scalp is sufficient to differentiate CDLE from psoriasis lesions or healthy HF. The expression profile from CDLE HFs coincides with published profiles of CDLE from skin biopsy. Genes that were highly expressed in lesional CDLE corresponded to well-known histopathological diagnostic features of CDLE and included those related to apoptotic cell death, the interferon signature, complement components and CD8+ T-cell immune responses. CONCLUSIONS: We therefore propose that information obtained from this non-invasive approach are sufficient to diagnose scalp lupus erythematosus. Once validated in routine clinical settings and compared with other scarring alopecias, this rapid and non-invasive approach will have great potential for paving the way for future diagnosis of inflammatory scalp lesions.

9.
Int J Cosmet Sci ; 41(2): 164-182, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30746733

RESUMO

OBJECTIVES: Although the effect of ultraviolet radiation (UVR) on human skin has been extensively studied, very little is known on how UVR impacts on hair follicle (HF) homeostasis. Here, we investigated how solar spectrum UVR that hits the human skin surface impacts on HF biology, and whether any detrimental effects can be mitigated by a widely used cosmetic and nutraceutical ingredient, caffeine. METHODS: Human scalp skin with terminal HFs was irradiated transepidermally ex vivo using either 10 J/cm2 UVA (340-440 nm) + 20 mJ/cm2 UVB (290-320 nm) (low dose) or 50 J/cm2 UVA + 50 mJ/cm2 UVB (high dose) and organ-cultured under serum-free conditions for 1 or 3 days. 0.1% caffeine (5.15 mmol/L) was topically applied for 3 days prior to UV exposure with 40 J/cm2 UVA + 40 mJ/cm2 UVB and for 3 days after UVR. The effects on various toxicity and vitality read-out parameters were measured in defined skin and HF compartments. RESULTS: Consistent with previous results, transepidermal UVR exerted skin cytotoxicity and epidermal damage. Treatment with high and/or low UVA+UVB doses also induced oxidative DNA damage and cytotoxicity in human HFs. In addition, it decreased proliferation and promoted apoptosis of HF outer root sheath (ORS) and hair matrix (HM) keratinocytes, stimulated catagen development, differentially regulated the expression of HF growth factors, and induced perifollicular mast cell degranulation. UVR-mediated HF damage was more severe after irradiation with high UVR dose and reached also proximal HF compartments. The topical application of 0.1% caffeine did not induce skin or HF cytotoxicity and stimulated the expression of IGF-1 in the proximal HF ORS. However, it promoted keratinocyte apoptosis in selected HF compartments. Moreover, caffeine provided protection towards UVR-mediated HF cytotoxicity and dystrophy, keratinocyte apoptosis, and tendential up-regulation of the catagen-promoting growth factor. CONCLUSION: Our study highlights the clinical relevance of our scalp UV irradiation ex vivo assay and provides the first evidence that transepidermal UV radiation negatively affects important human HF functions. This suggests that it is a sensible prophylactic strategy to integrate agents such as caffeine that can act as HF photoprotectants into sun-protective cosmeceutical and nutraceutical formulations.


OBJECTIFS: Alors que l'effet de rayons ultraviolets (RUV) sur la peau humaine a été largement étudié, on sait très peu de choses de l'impact des UV sur l'homéostasie du follicule pileux (FP). Ici, nous avons étudié l'effet du spectre des RUV solaires qui atteignent la surface de la peau humaine sur la biologie du FP, et si tout effet nocif peut être atténué par de la caféine, un ingrédient cosmétique et neutraceutique largement utilisé. MÉTHODES: Une peau de cuir chevelu humain avec ses FP terminaux a été irradiée ex vivo via l'épiderme soit par 10 J/cm2 d'UVA (340-440 nm) + 20 mJ/cm2 d'UVB (290-320 nm) (dose faible) soit par 50 J/cm2 d'UVA + 50 mJ/cm2 d'UVB (dose élevée) et placée en culture sans sérum pendant 1 ou 3 jours. 0,1% (5,15 mM) de caféine a été appliquée par voie topique pendant 3 jours avant l'exposition aux UV à raison de 40 J/cm2 d'UVA + 40 mJ/cm2 UVB et pendant 3 jours après l'exposition aux RUV. Les effets sur divers paramètres de toxicité et de vitalité ont été mesurés au niveau de compartiments définis de la peau et des FP. RÉSULTATS: Cohérent avec les résultats précédents, les RUV transépidermique ont exercé une cytotoxicité au niveau de la peau et des lésions épidermiques. Le traitement par des doses élevées et/ou faibles d'UVA+UVB a également induit des lésions oxydatives de l'ADN et une cytotoxicité au niveau des FP humains. En outre, il a diminué la prolifération et favorisé l'apoptose de la gaine externe de la racine (ORS) du FP et des kératinocytes de la matrice des cheveux (MC), a stimulé le développement de la phase catagène, a régulé de manière différentielle l'expression des facteurs de croissance des FP, et induit une dégranulation périfolliculaire des mastocytes. Les lésions du FP médiées par les RUV étaient plus graves après une irradiation par dose élevée de RUV et atteignaient également les compartiments proximaux du FP. L'application topique de 0,1 % de caféine n'a pas induit de cytotoxicité de la peau ou du FP et a stimulé l'expression d'IGF-1 dans la partie proximale de l'ORS du FP. Cependant, elle a promu l'apoptose des kératinocytes dans certains compartiments de FP. En outre, la caféine a fourni une protection des FP contre la cytotoxicité et la dystrophie médiées par les RUV, l'apoptose des kératinocytes et une régulation à tendance positive de l'effet catagène induit par le facteur de croissance. CONCLUSION: Notre étude souligne la pertinence clinique de notre dosage d'irradiation UV ex vivo du cuir chevelu et fournit la première preuve que le rayonnement UV transépidermique affecte négativement d'importantes fonctions du FP chez l'homme. Cela suggère que l'intégration d'agents photoprotecteurs des FP tels que la caféine dans les formulations cosmétiques et nutraceutiques des écrans solaires pourrait constituer une stratégie prophylactique sensée.


Assuntos
Cafeína/administração & dosagem , Cabelo/efeitos da radiação , Couro Cabeludo/efeitos da radiação , Pele/efeitos da radiação , Raios Ultravioleta , Administração Tópica , Idoso , Degranulação Celular/efeitos da radiação , Feminino , Cabelo/efeitos dos fármacos , Cabelo/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Mastócitos/efeitos da radiação , Pessoa de Meia-Idade , Couro Cabeludo/efeitos dos fármacos , Couro Cabeludo/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Fator de Crescimento Transformador beta/metabolismo
10.
Lasers Surg Med ; 51(6): 481-490, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30681170

RESUMO

OBJECTIVES: This review has the following objectives: Firstly, it provides an explanation of the evolution of laser/intense pulsed light (IPL) hair reduction modalities from high fluence professional devices to low fluence home-use appliances. Secondly, it summarises published literature reviews on home-use devices (HUDs) as evidence of their growing credibility. Thirdly, it proposes mechanistic differences in light delivery regimes and the resulting divergences in mode of action. MATERIALS AND METHODS: An extensive literature search was performed to review the progress of laser/IPL-induced hair reduction and determine what evidence is available to explain the mode of action of professional and HUDs for hair removal. Establishing the likely biological mode of action of professional high-fluence systems versus home-use low-fluence appliances was performed by combining data obtained using ex vivo hair follicle (HF) organ culture and the clinical results involving human participants. RESULTS: Significant basic science and clinical evidence has been published to confirm the clinical efficacy and technical safety of many laser and IPL home-use devices for hair removal. Clearly, HUDs are different compared to professional systems both in terms of fluence per pulse and in terms of biological mechanisms underlying hair removal. Here we presented data showing that a single low fluence pulse of both 810 nm laser (6.6 J/cm2 , 16 ms) and IPL (9 J/cm2 , 15 ms and 6.8 J/cm2 , 1.9 ms) leads to induction of catagen transition. Catagen transition was characterized by morphological changes similar to what occurs in vivo with occasional detection of apoptosis in the dermal papilla and outer root sheath cells. This suggests that high hair reduction can be expected in vivo and longer-term treatment might result in HF miniaturization due to a cumulative effect on the dermal papilla and outer root sheath cells. In line with this hypothesis, in this review we demonstrate that long-term application of a commercially-available home-use IPL appliance resulted in persistent hair reduction (80%) one year after last treatment. These data are in line with what was previously reported in the literature, where clinical studies with home-use IPL appliances demonstrated high efficacy of hair reduction on female legs, armpits and bikini zones, with full hair regrowth after four treatments following cessation of IPL administration. Limitations of HUDs include lack of hair clearance for very dark skin types and low speed of treatment compared with professional devices. Numerous uncontrolled and controlled clinical efficacy studies and technical safety investigations on consumer-use appliances support many of the leading manufacturers' claims. ANALYSIS & CONCLUSIONS: Manufacturers make consumer appliances safe and easy to use by considering "human factors," needs and capabilities of a variety of users. Safety is of primary concern to manufacturers, regulators and standards bodies as these appliances may be accessible to children or their use attempted on unsuitable skin types without full awareness of potential side effects. Consumer cosmetic appliances are provided with warnings and obvious safety notices describing the nature of any ocular or dermal hazard and precautions for reducing risk of accidental injury, infection, etc. HUDs employing optical energy are provided with design and engineering controls such as safety switches, alarms and sensors to prevent their incorrect operation or eye exposure. In-vivo studies demonstrated that low fluence home-use hair removal devices can result in high hair reduction efficacy after a short treatment regime, while prolonged and less frequent (once in six weeks) maintenance treatment over a year can lead to high and sustained hair reduction even one year after cessation of treatment. Home-use hair removal devices can be a useful adjunct to professional in-office treatments with high professional awareness. There are sufficient positive arguments for practitioners to make the case to patients for HUDs as "companion" products to professional treatments. In addition, devices for hair removal can be used effectively as stand-alone products by the consumer if they are willing to adopt a regime of regular or frequent use. Further clinical studies involving dynamic observation of HF cycle stage and type (terminal vs. vellus) over the total duration of treatment, for example, using biopsies or non-invasive imaging are necessary to confirm the proposed mode of action of low fluence pulses in a combination with treatment and maintenance regimes. Lasers Surg. Med. 51:481-490, 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
Remoção de Cabelo , Terapia de Luz Pulsada Intensa , Humanos
11.
Lasers Surg Med ; 50(8): 859-882, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29665018

RESUMO

BACKGROUND OBJECTIVES: The past decade has witnessed a rapid expansion of photobiomodulation (PBM), demonstrating encouraging results for the treatment of cutaneous disorders. Confidence in this approach, however, is impaired not only by a lack of understanding of the light-triggered molecular cascades but also by the significant inconsistency in published experimental outcomes, design of the studies and applied optical parameters. This study aimed at characterizing the response of human dermal fibroblast subpopulations to visible and near-infrared (NIR) light in an attempt to identify the optical treatment parameters with high potential to address deficits in aging skin and non-healing chronic wounds. MATERIALS AND METHODS: Primary human reticular and papillary dermal fibroblasts (DF) were isolated from the surplus of post-surgery human facial skin. An in-house developed LED-based device was used to irradiate cell cultures using six discrete wavelengths (450, 490, 550, 590, 650, and 850 nm). Light dose-response at a standard oxygen concentration (20%) at all six wavelengths was evaluated in terms of cell metabolic activity. This was followed by an analysis of the transcriptome and procollagen I production at a protein level, where cells were cultured in conditions closer to in vivo at 2% environmental oxygen and 2% serum. Furthermore, the production of reactive oxygen species (ROS) was accessed using real-time fluorescence confocal microscopy imaging. Here, production of ROS in the presence or absence of antioxidants, as well as the cellular localization of ROS, was evaluated. RESULTS: In terms of metabolic activity, consecutive irradiation with short-wavelength light (⇐530 nm) exerted an inhibitory effect on DF, while longer wavelengths (>=590 nm) had essentially a neutral effect. Cell behavior following treatment with 450 nm was biphasic with two distinct states: inhibitory at low- to mid- dose levels (<=30 J/cm2 ), and cytotoxic at higher dose levels (>30 J/cm2 ). Cell response to blue light was accompanied by a dose-dependent release of ROS that was localized in the perinuclear area close to mitochondria, which was attenuated by an antioxidant. Overall, reticular DFs exhibited a greater sensitivity to light treatment at the level of gene expression than did papillary DFs, with more genes significantly up- or down- regulated. At the intra-cellular signaling pathway level, the up- or down- regulation of vital pathways was observed only for reticular DF, after treatment with 30 J/cm2 of blue light. At the cellular level, short visible wavelengths exerted a greater inhibitory effect on reticular DF. Several genes involved in the TGF-ß signaling pathway were also affected. In addition, procollagen I production was inhibited. By contrast, 850 nm near-infrared (NIR) light (20 J/cm2 ) exerted a stimulatory metabolic effect in these cells, with no detectable intracellular ROS formation. Here too, reticular DF were more responsive than papillary DF. This stimulatory effect was only observed under in vivo-like low oxygen conditions, corresponding to normal dermal tissue oxygen levels (approximately 2%). CONCLUSION: This study highlights a differential impact of light on human skin cells with upregulation of metabolic activity with NIR light, and inhibition of pro-collagen production and proliferation in response to blue light. These findings open-up new avenues for developing therapies for different cutaneous conditions (e.g., treatment of keloids and fibrosis) or differential therapy at distinct stages of wound healing. Lasers Surg. Med. 50:859-882, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Fibroblastos/efeitos da radiação , Raios Infravermelhos , Terapia com Luz de Baixa Intensidade , Dermatopatias/radioterapia , Técnicas de Cultura de Células , Proliferação de Células/efeitos da radiação , Fibroblastos/fisiologia , Humanos , Doses de Radiação
12.
J Invest Dermatol ; 138(3): 549-556, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29080678

RESUMO

Alopecia areata (AA) is one of the most common forms of human hair loss. Although genetic studies have implicated autoimmune processes in AA etiology, understanding of the etiopathogenesis is incomplete. Recent research has implicated microRNAs, a class of small noncoding RNAs, in diverse autoimmune diseases. To our knowledge, no study has investigated the role of microRNAs in AA. In this study, gene-based analyses were performed for microRNAs using data of the largest genome-wide association meta-analysis of AA to date. Nominally, significant P-values were obtained for 78 of the 617 investigated microRNAs. After correction for multiple testing, three of the 78 microRNAs remained significant. Of these, miR-30b/d was the most significant microRNA for the follow-up analyses, which also showed lower expression in the hair follicle of AA patients. Target gene analyses for the three microRNAs showed 42 significantly associated target genes. These included IL2RA, TNXB, and ERBB3, which had been identified as susceptibility loci in previous genome-wide association studies. Using luciferase assay, site-specific miR-30b regulation of the AA risk genes IL2RA, STX17, and TNXB was validated. This study implicates microRNAs in the pathogenesis of AA. This finding may facilitate the development of future treatment strategies.


Assuntos
Alopecia em Áreas/etiologia , MicroRNAs/fisiologia , Alopecia em Áreas/genética , Estudo de Associação Genômica Ampla , Células HEK293 , Humanos , Subunidade alfa de Receptor de Interleucina-2/genética , MicroRNAs/análise , Proteínas Qa-SNARE/genética , Tenascina/genética
13.
Sci Rep ; 7(1): 3257, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28607463

RESUMO

Multiple factors and conditions can lead to impaired wound healing. Chronic non-healing wounds are a common problem among the elderly. To identify microRNAs negatively impacting the wound repair, global miRNA profiling of wounds collected from young and old mice was performed. A subset of miRNAs that exhibited an age-dependent expression pattern during wound closure was identified, including miR-31 and miR-200c. The expression of miR-200 family members was markedly downregulated upon wounding in both young and aged mice, with an exception of acute upregulation of miR-200c at the early phase of wound healing in aged skin. In unwounded aged skin (versus unwounded younger skin), the level of miR-200c was also found elevated in both human and mice. Overexpression of miR-200c in human ex vivo wounds delayed re-epithelialisation and inhibited cell proliferation in the wound epithelium. Modulation of miR-200c expression in both human and mouse keratinocytes in vitro revealed inhibitory effects of miR-200c on migration, but not proliferation. Accelerated wound closure in vitro induced by anti-miR-200c was associated with upregulation of genes controlling cell migration. Thus, our study identified miR-200c as a critical determinant that inhibits cell migration during skin repair after injury and may contribute to age-associated alterations in wound repair.


Assuntos
Envelhecimento/metabolismo , Queratinócitos/metabolismo , MicroRNAs/metabolismo , Cicatrização/fisiologia , Animais , Proliferação de Células , Células Cultivadas , Humanos , Camundongos , Reepitelização , Pele/lesões , Envelhecimento da Pele , Ferimentos e Lesões/metabolismo
15.
J Invest Dermatol ; 137(5): e105-e111, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28411840

RESUMO

Progress in genome sequencing achieved during the last two decades revealed that only about 2% of the genome codes for proteins, while the largest genome fraction is encoding thousands of non-coding RNAs. Non-coding RNAs play indispensable roles in regulating the activity and stability of the genome. Recent research in the area of the non-coding transcriptome signified the crucial roles for RNA regulatory networks in the normal development and their implications in a variety of pathological conditions. Here, recent advances in our understanding of non-coding RNA-mediated regulation of skin development and homeostasis are highlighted, focusing mainly on the regulatory roles of miRNAs and lncRNAs.


Assuntos
Dermatologia/métodos , RNA não Traduzido/genética , Fenômenos Fisiológicos da Pele/genética , Animais , Humanos , MicroRNAs/genética , Biologia Molecular/métodos , RNA Longo não Codificante/genética , Transcriptoma
16.
Lasers Surg Med ; 49(7): 705-718, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28418107

RESUMO

BACKGROUND AND OBJECTIVE: Though devices for hair growth based on low levels of light have shown encouraging results, further improvements of their efficacy is impeded by a lack of knowledge on the exact molecular targets that mediate physiological response in skin and hair follicle. The aim of this study was to investigate the expression of selected light-sensitive receptors in the human hair follicle and to study the impact of UV-free blue light on hair growth ex vivo. MATERIAL AND METHODS: The expression of Opsin receptors in human skin and hair follicles has been characterized using RT-qPCR and immunofluorescence approaches. The functional significance of Opsin 3 was assessed by silencing its expression in the hair follicle cells followed by a transcriptomic profiling. Proprietary LED-based devices emitting two discrete visible wavelengths were used to access the effects of selected optical parameters on hair growth ex vivo and outer root sheath cells in vitro. RESULTS: The expression of OPN2 (Rhodopsin) and OPN3 (Panopsin, Encephalopsin) was detected in the distinct compartments of skin and anagen hair follicle. Treatment with 3.2 J/cm2 of blue light with 453 nm central wavelength significantly prolonged anagen phase in hair follicles ex vivo that was correlated with sustained proliferation in the light-treated samples. In contrast, hair follicle treatment with 3.2 J/cm2 of 689 nm light (red light) did not significantly affect hair growth ex vivo. Silencing of OPN3 in the hair follicle outer root sheath cells resulted in the altered expression of genes involved in the control of proliferation and apoptosis, and abrogated stimulatory effects of blue light (3.2 J/cm2 ; 453 nm) on proliferation in the outer root sheath cells. CONCLUSIONS: We provide the first evidence that (i) OPN2 and OPN3 are expressed in human hair follicle, and (ii) A 453 nm blue light at low radiant exposure exerts a positive effect on hair growth ex vivo, potentially via interaction with OPN3. Lasers Surg. Med. 49:705-718, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Alopecia/radioterapia , Folículo Piloso/metabolismo , Cabelo/crescimento & desenvolvimento , Luz , Terapia com Luz de Baixa Intensidade/métodos , Rodopsina/metabolismo , Opsinas de Bastonetes/metabolismo , Adulto , Idoso , Alopecia/fisiopatologia , Apoptose , Biomarcadores/metabolismo , Proliferação de Células , Feminino , Folículo Piloso/fisiologia , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade
17.
Exp Dermatol ; 25(10): 745-9, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27095546

RESUMO

Photobiomodulation is reported to positively influence hair regrowth, wound healing, skin rejuvenation and psoriasis. Despite rapid translation of this science to commercial therapeutic solutions, significant gaps in our understanding of the underlying processes remain. The aim of this review was to seek greater clarity and rationality specifically for the selection of optical parameters for studies on hair regrowth and wound healing. Our investigation of 90 reports published between 1985 and 2015 revealed major inconsistencies in optical parameters selected for clinical applications. Moreover, poorly understood photoreceptors expressed in skin such as cytochrome c oxidase, cryptochromes, opsins etc. may trigger different molecular mechanisms. All this could explain the plethora of reported physiological effects of light. To derive parameters for optimal clinical efficacy of photobiomodulation, we recommend a more rational approach to underpin clinical studies, with research on molecular targets and pathways using well-defined biological model systems to enable translation of optical parameters from in vitro to in vivo. Furthermore, special attention needs to be paid when conducting studies for hair regrowth, aiming for double-blind, placebo-controlled randomized clinical trials as the gold standard for quantifying hair growth.


Assuntos
Terapia com Luz de Baixa Intensidade , Dermatopatias/terapia , Cicatrização/efeitos da radiação , Folículo Piloso/efeitos da radiação , Humanos , Células Fotorreceptoras/efeitos da radiação , Pesquisa Translacional Biomédica
18.
Exp Dermatol ; 24(11): 821-6, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26121602

RESUMO

Hair follicle development and its postnatal regeneration are characterized by dramatic changes in its microanatomy and cellular activity, which are controlled by multiple signalling pathways, transcription factors and epigenetic regulators, including microRNAs (miRNAs). miRNAs and their targets form remarkably diverse regulatory networks, playing a key role in the execution of gene expression programmes in the different cell lineages of the hair follicle. This review summarizes the roles of miRNAs in the control of hair follicle development, cycling and hair pigmentation, emphasizes the remaining problems/unanswered questions, and provides future directions in this rapidly growing and exciting area of research.


Assuntos
Cor de Cabelo , Folículo Piloso/fisiologia , MicroRNAs/metabolismo , Animais , Humanos
19.
J Cell Biol ; 207(4): 549-67, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25422376

RESUMO

Skin development is governed by complex programs of gene activation and silencing, including microRNA-dependent modulation of gene expression. Here, we show that miR-214 regulates skin morphogenesis and hair follicle (HF) cycling by targeting ß-catenin, a key component of the Wnt signaling pathway. miR-214 exhibits differential expression patterns in the skin epithelium, and its inducible overexpression in keratinocytes inhibited proliferation, which resulted in formation of fewer HFs with decreased hair bulb size and thinner hair production. The inhibitory effects of miR-214 on HF development and cycling were associated with altered activities of multiple signaling pathways, including decreased expression of key Wnt signaling mediators ß-catenin and Lef-1, and were rescued by treatment with pharmacological Wnt activators. Finally, we identify ß-catenin as one of the conserved miR-214 targets in keratinocytes. These data provide an important foundation for further analyses of miR-214 as a key regulator of Wnt pathway activity and stem cell functions during normal tissue homeostasis, regeneration, and aging.


Assuntos
Folículo Piloso/crescimento & desenvolvimento , Fator 1 de Ligação ao Facilitador Linfoide/genética , MicroRNAs/fisiologia , Via de Sinalização Wnt , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Senescência Celular/genética , Genótipo , Folículo Piloso/metabolismo , Queratina-10/biossíntese , Queratina-14/biossíntese , Queratinócitos/citologia , Fator 1 de Ligação ao Facilitador Linfoide/biossíntese , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Regeneração/genética , Pele/crescimento & desenvolvimento , Pele/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/biossíntese , beta Catenina/genética
20.
J Invest Dermatol ; 134(12): 2873-2882, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24999588

RESUMO

Chemotherapy has severe side effects in normal rapidly proliferating organs, such as hair follicles, and causes massive apoptosis in hair matrix keratinocytes followed by hair loss. To define the molecular signature of hair follicle response to chemotherapy, human scalp hair follicles cultured ex vivo were treated with doxorubicin (DXR), and global microarray analysis was performed 3 hours after treatment. Microarray data revealed changes in expression of 504 genes in DXR-treated hair follicles versus controls. Among these genes, upregulations of several tumor necrosis factor family of apoptotic receptors (FAS, TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) receptors 1/2), as well as of a large number of keratin-associated protein genes, were seen after DXR treatment. Hair follicle apoptosis induced by DXR was significantly inhibited by either TRAIL-neutralizing antibody or caspase-8 inhibitor, thus suggesting a previously unreported role for TRAIL receptor signaling in mediating DXR-induced hair loss. These data demonstrate that the early phase of the hair follicle response to DXR includes upregulation of apoptosis-associated markers, as well as substantial reorganization of the terminal differentiation programs in hair follicle keratinocytes. These data provide an important platform for further studies toward the design of effective approaches for the management of chemotherapy-induced hair loss.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Folículo Piloso/citologia , Alopecia/induzido quimicamente , Alopecia/metabolismo , Alopecia/patologia , Antineoplásicos/efeitos adversos , Caspase 8/efeitos dos fármacos , Caspase 8/metabolismo , Células Cultivadas , Dano ao DNA/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Folículo Piloso/metabolismo , Folículo Piloso/patologia , Humanos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/efeitos dos fármacos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor fas/efeitos dos fármacos , Receptor fas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...