Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(27): e2303421, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38533978

RESUMO

Materials with tunable negative electromagnetic performance, i.e., where dielectric permittivity becomes negative, have long been pursued in materials research due to their peculiar electromagnetic (EM) characteristics. Here, this promising feature is reported in materials on the case of plasma-synthesized nitrogen-doped graphene sheets with tunable permittivity over a wide (1-40 GHz) frequency range. Selectively incorporated nitrogen atoms in a graphene scaffold tailor the electronic structure in a way that provides an ultra-low energy (0.5-2 eV) 2D surface plasmon excitation, leading to subunitary and negative dielectric constant values in the Ka-band, from 30 up to 40 GHz. By allowing the tailoring of structures at atomic scale, this novel plasma-based approach creates a new paradigm for designing 2D nanomaterials like nanocarbons with controllable and tunable permittivity, opening a path to the next generation of 2D metamaterials.

2.
Membranes (Basel) ; 13(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36676811

RESUMO

The antibacterial properties of cellulose acetate/silver nanoparticles (AgNP) ultrafiltration membranes were correlated with their integral asymmetric porous structures, emphasizing the distinct features of each side of the membranes, that is, the active and porous layers surfaces. Composite membranes were prepared from casting solutions incorporating polyvinylpyrrolidone-covered AgNP using the phase inversion technique. The variation of the ratio acetone/formamide and the AgNP content resulted in a wide range of asymmetric porous structures with different hydraulic permeabilities. Comprehensive studies assessing the antibacterial activity against Escherichia coli (cell death and growth inhibition of bacteria in water) were performed on both membrane surfaces and in E. coli suspensions. The results were correlated with the surface chemical composition assessed by XPS. The silver-free membranes presented a generalized growth of E. coli, which is in contrast with the inhibition patterns displayed by the membranes containing AgNP. For the surface bactericide test, the growth inhibition depends on the accessibility of E. coli to the silver present in the membrane; as the XPS results show, the more permeable membranes (CA30 and CA34 series) have higher silver signal detected by XPS, which is correlated with a higher growth inhibition. On the other hand, the inhibition action is independent of the membrane porous structure when the membrane is deeply immersed in an E. coli inoculated suspension, presenting almost complete growth inhibition.

3.
Nanomaterials (Basel) ; 11(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34684959

RESUMO

Dielectric properties and spectral dependence of the photocatalytic constant of Co doped P25 Degussa powder were studied. Doping of TiO2 matrix with cobalt was achieved by precipitation method using of Tris(diethylditiocarbamate)Co(III) precursor (CoDtc-Co[(C2H5)2NCS2]3). Five different Co contents with nominal Co/Ti atomic ratios of 0.005, 0.01, 0.02, 0.05 and 0.10 were chosen. Along with TiO2:Co samples, a few samples of nanopowders prepared by Sol-Gel method were also studied. As it follows from XPS and NMR studies, there is a concentration limit (TiO2:0.1Co) where cobalt atoms can be uniformly distributed across the TiO2 matrix before metallic clusters start to form. It was also shown that CoTiO3 phases are formed during annealing at high temperatures. From the temperature dependence of the dielectric constant it can be concluded that the relaxation processes still take place even at temperatures below 400 °C and that oxygen defect Ti-O octahedron reorientation take place at higher temperatures. The spectral dependency of the photocatalytic constant reveals the presence of some electronic states inside the energy gap of TiO2 for all nanopowdered samples.

4.
Colloids Surf B Biointerfaces ; 200: 111600, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33582443

RESUMO

Cotton fabrics decorated with Cu2O-Ag and Cu2O-Ag-AgBr NPs have been prepared using chemically immobilized Cu2O NPs as sacrificial templates. The objective is to prepare Cu2O-Ag heterostructures with Ag being intimately in contact with Cu2O NPs by galvanic replacement reactions without addition of any external reducing agent. Field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis were used to study the morphology and the chemical composition of the nanocomposites formed on the fabrics. The morphology of the ensuing nanostructures was shown to be dependent on the Ag precursor, AgNO3, concentration. The antimicrobial activity of the treated fabrics was evaluated against Staphylococcus aureus and Escherichia coli as model strains of gram-negative and gram-positive, respectively. The results showed that the fabrics loaded with Cu2O-Ag and Cu2O-Ag-AgBr nanocomposites exhibited enhanced sterilization activity compared to the Cu2O treated fabric.


Assuntos
Nanopartículas Metálicas , Prata , Antibacterianos/farmacologia , Fibra de Algodão , Prata/farmacologia , Staphylococcus aureus , Têxteis
5.
Materials (Basel) ; 13(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255765

RESUMO

Loosening of orthodontic and orthopedic implants is a critical and common clinical problem. To minimize the numbers of revision surgeries due to peri-implant inflammation or insufficient osseointegration, developments of new implant manufacturing strategies are indicated. Ultrafast laser surface texturing is a promising contact-free technology to modify the physicochemical properties of surfaces toward an anti-infectious functionalization. This work aims to texture Ti6Al4V surfaces with ultraviolet (UV) and green (GR) radiation for the manufacturing of laser-induced periodic surface structures (LIPSS). The assessment of these surface modifications addresses key aspects of topography, morphology and chemical composition. Human primary mesenchymal stromal cells (hMSCs) were cultured on laser-textured and polished Ti6Al4V to characterize the surfaces in terms of their in vitro biocompatibility, cytotoxicity, and metal release. The outcomes of the in vitro experiment show the successful culture of hMSCs on textured Ti6Al4V surfaces developed within this work. Cells cultured on LIPSS surfaces were not compromised in terms of their viability if compared to polished surfaces. Yet, the hMSC culture on UV-LIPSS show significantly lower lactate dehydrogenase and titanium release into the supernatant compared to polished. Thus, the presented surface modification can be a promising approach for future applications in orthodontics and orthopedics.

6.
Colloids Surf B Biointerfaces ; 196: 111342, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32889449

RESUMO

In this study, cotton fabrics decorated with Ag/AgCl and Ag/AgBr NPs were produced by a simple hydrothermal treatment using AgCl and AgBr as precursors. Their morphological features as well as, chemical composition and structural and luminescence properties were compared. Their water disinfection aptitude against E. coli and S. aureus was also investigated under solar illumination in batch as well asin dynamic conditions. The highest activity was observed for Cot-Ag/AgCl with a quasi-complete inactivation of E. coli and S. aureus(1.5 × 107cfu mL-1) within 15 min illumination. Disinfection efficiency under continuous flow was also tested using a home-made photoreactor and the cotton fabrics with the most efficient photocatalyst (Ag/AgCl). It has shown to be efficient at least for 10 cycles revealing the robustness of the functionalization. The mechanism of photocatalytic disinfection was explained in terms of the surface plasmon resonance (SPR) induced by the presence of Ag NPs, the resulting holes, h+, being one of the most intervenient species in the disinfection mechanism. The difference in the photocatalytic efficiency between AgCl and AgBr functionalized cotton was attributed to differences in the carriers (h+and e-) lifetime. This work provides a proof of concept for the potential applicability of Cot-Ag/AgCl or Cot-Ag/AgBr for in-flow potabilization of water under solar illumination.


Assuntos
Compostos de Prata , Prata , Catálise , Escherichia coli , Luz , Staphylococcus aureus
7.
Nanomaterials (Basel) ; 9(5)2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121849

RESUMO

In this work, cellulose films pre-activated with carbonyldiimidazole (CDI) and grafted with 1,6-hexanediamine, were decorated with silver nanoparticles (AgNPs). The generation of AgNPs was followed by quartz crystal microbalance (QCM). The obtained films were characterized by X-Ray Photoelectron Spectroscopy (XPS) and imaged by atomic force microscopy (AFM). XPS confirmed the synthesis in situ of AgNPs on the film attesting their oxidation state. The results from the three techniques were compared showing how sound the quantitative treatment of the results issued from these techniques can be. The main objective of this work is exactly to show that the quantitative exploration of the results of different characterization techniques can and should be practiced systematically instead of just comparing them qualitatively.

8.
Int J Biol Macromol ; 116: 1098-1104, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29792960

RESUMO

Thin films of chitosan (CS) coated on glass substrates were used as support for the immobilization of nanostructures TiO2/ZnS via a mild chemical process followed by a hydrothermal treatment at 90 °C. The preparation route involved the coating of the CS film on the glass substrate followed by the deposition of a thin layer of Ti(OBu)4 precursor and immersion in a solution of Zn(O2CCH3)2 and Na2S. After a hydrothermal treatment at 90 °C, an even layer of TiO2 anatase decorated by ZnS nanorods was generated. Evidence of the formation of TiO2 anatase and ZnS was confirmed by XRD, Raman and XPS, and the morphology of the TiO2 layer and ZnS nanoparticles was analyzed by FE-SEM observations. The photocatalytic activity of the CS-TiO2-ZnS systems was evaluated by the degradation of a wide range of organic compounds including aromatic amines and carboxylic acids under a conventional halogen lamp.


Assuntos
Quitosana/química , Materiais Revestidos Biocompatíveis , Nanopartículas/química , Processos Fotoquímicos , Sulfetos/química , Titânio/química , Compostos de Zinco/química , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/química
9.
Nanomedicine (Lond) ; 10(5): 725-39, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25816876

RESUMO

AIM: The aim of the present work was to investigate ultrafast laser surface texturing as a surface treatment of Ti-6Al-4V alloy dental and orthopedic implants to improve osteoblastic commitment of human mesenchymal stem cells (hMSCs). MATERIALS & METHODS: Surface texturing was carried out by direct writing with an Yb:KYW chirped-pulse regenerative amplification laser system with a central wavelength of 1030 nm and a pulse duration of 500 fs. The surface topography and chemical composition were investigated by scanning electron microscopy and x-ray photoelectron spectroscopy, respectively. Three types of surface textures with potential interest to improve implant osseointegration can be produced by this method: laser-induced periodic surface structures (LIPSSs); nanopillars (NPs); and microcolumns covered with LIPSSs, forming a bimodal roughness distribution. The potential of the laser treatment in improving hMSC differentiation was assessed by in vitro study of hMSCs spreading, adhesion, elongation and differentiation using epifluorescence microscopy at different times after cell seeding, after specific stainings and immunostainings. RESULTS: Cell area and focal adhesion area were lower on the laser-textured surfaces than on a polished reference surface. Obviously, the laser-textured surfaces have an impact on cell shape. Osteoblastic commitment was observed independently of the surface topography after 2 weeks of cell seeding. When the cells were cultured (after 4 weeks of seeding) in osteogenic medium, LIPSS- and NP- textured surfaces enhanced matrix mineralization and bone-like nodule formation as compared with polished and microcolumn-textured surfaces. CONCLUSION: The present work shows that surface nanotextures consisting of LIPSSs and NPs can, potentially, improve hMSC differentiation into an osteoblastic lineage.


Assuntos
Células-Tronco Mesenquimais/citologia , Titânio , Ligas , Adesão Celular , Diferenciação Celular , Células Cultivadas , Humanos , Lasers de Estado Sólido , Células-Tronco Mesenquimais/metabolismo , Microscopia Eletrônica de Varredura , Nanomedicina , Osseointegração , Osteoblastos/citologia , Osteogênese , Espectroscopia Fotoeletrônica , Propriedades de Superfície
10.
Langmuir ; 26(3): 1996-2001, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-19894686

RESUMO

A method to produce hybrid systems of cellulose ultrathin films containing immobilized silver nanoparticles (Ag NPs) generated and grown at the surface is presented. Ag NPs were produced via a mild wet chemistry technique on cellulose ultrathin films spin-coated on GaAs substrates and on modified films after grafting of diaminoalkanes activated by N,N'-carbonyldiimidazole. Appended amine groups operate as anchoring centers of the silver NPs enabling selective generation and immobilization of Ag NPs. The different phases of the modification process were followed by Fourier transform infrared spectroscopy (FTIRS) in attenuated total reflection in multiple internal reflections (ATR/MIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The generation of NPs is observed even on untreated cellulose surfaces with sizes ranging from 7 to 30 nm but not specifically at the surface. For modified surfaces with diaminoalkanes, higher NP density regions including extensive plates are obtained, which are specifically located at the film extreme surface. The highest NP density is achieved when the NP generation is performed on these modified surfaces in the presence of a carboxylic salt.

11.
Colloids Surf B Biointerfaces ; 66(2): 168-77, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18684596

RESUMO

Rhizopus oryzae lipase (ROL) was immobilized by adsorption onto oxidized cellulose fibers and regenerated films. The maximum adsorption level increases with the raise in the amount of carboxylic groups on cellulose surface confirming that adsorption is being governed mainly by electrostatic interaction between the enzyme and the substrate. This hypothesis was further confirmed by zeta-potential measurements showing a decrease in the zeta-potential of the fibers after enzyme adsorption. XPS analysis showed an intensification of the N 1s peak attesting the presence of the enzyme on the surface. The effect of temperature, pH and solvent polarity on the immobilized enzyme activity and stability was investigated. The catalytic esterification of oleic acid with n-butanol has been carried on using hexane as an organic solvent. A high conversion yield was obtained (about 80%) at 37 degrees C with a molar ratio of oleic acid to butanol 1:1 and 150IU immobilized lipase. The adsorption achieved two successive cycles with the same efficiency, and started to lose its activity during the third cycle.


Assuntos
Celulose/química , Enzimas Imobilizadas/química , Lipase/química , Membranas Artificiais , Rhizopus/enzimologia , 1-Butanol/química , Adsorção , Configuração de Carboidratos , Catálise , Estabilidade Enzimática , Ésteres/síntese química , Ésteres/química , Concentração de Íons de Hidrogênio , Cinética , Ácidos Oleicos/química , Solventes/química , Eletricidade Estática , Propriedades de Superfície , Temperatura , Fatores de Tempo
12.
Langmuir ; 24(14): 7309-15, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18563921

RESUMO

Ultrathin films of cellulose were functionalized with iron protoporphyrin IX (FePP). Spin-coating allows the production of silylated cellulose films in a controlled way. Cellulose regeneration is achieved through the hydrolyzation of the silane groups, exposing the film to acidic vapors. To enhance the reactivity of the cellulose surface to the protoporphyrin, carbonyldiimidazole (CDI) was used as an activator. The effect of different spacers on the porphyrin grafting such as 1,8-diaminooctane and 1,4-phenylenediamine was studied. The highest level of cellulose functionalization with FePP was achieved when both the cellulose film and FePP were activated by CDI and a diaminoalkane was used as a spacer between the surface and the FePP. ATR/MIR (attenuated total reflection in multiple internal reflections) was performed in situ to follow the kinetics of the different chemical reactions with the cellulose surface. ATR/MIR proved again to be a powerful tool for probing the surface reaction. X-ray photoelectron spectroscopy permitted the elemental analysis of the cellulose surface after the chemical modification.

13.
J Colloid Interface Sci ; 313(1): 26-33, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17509599

RESUMO

The amount of counterions, measured by means of X-ray photoelectron spectroscopy (XPS), in layer-by-layer (LbL) films of poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS), prepared from solutions with various NaCl concentrations, is shown to be greatly influenced by the film drying process: a smaller amount of counterions is observed in films dried after adsorption of each layer, when compared with films that were never dried during the film preparation. This is attributed to the formation of NaCl nanocrystals during the drying process which dissolve when the film is again immersed in the next polyelectrolyte solution. The presence of bonded water molecules was confirmed in wet films indicating that the counterions near the ionic groups are immersed in a water network. The number of counterions is dependent on the amount of salt in polyelectrolyte solutions in such a way that for a concentration of 0.2 M the relative amount of counterions attains saturation for both dried and wet samples, indicating that the process which leads the aggregation of counterions near of the ionic groups is not influenced by the drying process. Moreover, it is proven for wet samples that the increase in salt concentration leads to a decrease in the number of PAH ionized groups as predicted by the Muthukumar theory [J. Chem. Phys. 120 (2004) 9343] accounting for the counterion condensation on flexible polyelectrolytes.

14.
Langmuir ; 20(19): 8103-9, 2004 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-15350079

RESUMO

The amount of counterions in layer-by-layer (LBL) films of poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS) has been determined with X-ray photoelectron spectroscopy (XPS) for films prepared from solutions with various NaCl concentrations. Sodium and chloride counterions are present in LBL films produced from salt solutions, which are located at the surface and in the bulk of the films. The percentage of bulk counterions increases with the ionic strength of the polyelectrolyte before reaching a constant value. The bulk sodium/sulfur percentage ratios tend to 0.8 for samples washed with pure water and for samples washed with NaCl aqueous solutions, while the bulk chlorine/nitrogen percentage ratios tend to 0.5 for the same samples. The ratio between the percentages of polyelectrolyte ionic groups lies close to unity for all samples, indicating that counterions do not contribute to charge compensation in the polyelectrolyte during the adsorption process. The presence of counterions in LBL films is explained by Manning condensation near the polyelectrolyte ionic groups, leading to inter-polyelectrolyte ionic bondings via ionic networks. It is believed that condensation leads to the formation of NaCl crystallites in these LBL films, which was confirmed by X-ray diffraction measurements.


Assuntos
Ácido Clorídrico/química , Membranas Artificiais , Poliaminas/química , Poliestirenos/química , Cristalização , Sensibilidade e Especificidade , Cloreto de Sódio/química , Espectrometria por Raios X/métodos , Propriedades de Superfície , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...