Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 288(1943): 20202719, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33467997

RESUMO

Osteostraci and Galeaspida are stem-gnathostomes, occupying a key phylogenetic position for resolving the nature of the jawless ancestor from which jawed vertebrates evolved more than 400 million years ago. Both groups are characterized by the presence of rigid headshields that share a number of common morphological traits, in some cases hindering the resolution of their interrelationships and the exact nature of their affinities with jawed vertebrates. Here, we explore the morphological and functional diversity of osteostracan and galeaspid headshields using geometric morphometrics and computational fluid dynamics to constrain the factors that promoted the evolution of their similar morphologies and informing on the ecological scenario under which jawed vertebrates emerged. Phylomorphospace, Mantel analysis and Stayton metrics demonstrate a high degree of homoplasy. Computational fluid dynamics reveals similar hydrodynamic performance among morphologically convergent species, indicating the independent acquisition of the same morphofunctional traits and, potentially, equivalent lifestyles. These results confirm that a number of the characters typically used to infer the evolutionary relationships among galeaspids, osteostracans and jawed vertebrates are convergent in nature, potentially obscuring understanding of the assembly of the gnathostome bodyplan. Ultimately, our results reveal that while the jawless relatives of the earliest jawed vertebrates were ecologically diverse, widespread convergence on the same hydrodynamic adaptations suggests they had reached the limits of their potential ecological diversity-overcome by jawed vertebrates and their later innovations.


Assuntos
Arcada Osseodentária , Vertebrados , Animais , Evolução Biológica , Filogenia
2.
Biol Lett ; 16(11): 20200746, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33232650

RESUMO

Nursery areas are fundamental for the success of many marine species, particularly for large, slow-growing taxa with low fecundity and high age of maturity. Here, we examine the population size-class structure of the extinct gigantic shark Otodus megalodon in a newly described middle Miocene locality from Northeastern Spain, as well as in eight previously known formations (Temblor, Calvert, Pisco, Gatún, Chucunaque, Bahía Inglesa, Yorktown and Bone Valley). In all cases, body lengths of all individuals were inferred from dental parameters and the size-class structure was estimated from kernel probability density functions and Gaussian mixture models. Our analyses support the presence of five potential nurseries ranging from the Langhian (middle Miocene) to the Zanclean (Pliocene), with higher densities of individuals with estimated body lengths within the typical range of neonates and young juveniles. These results reveal, for the first time, that nursery areas were commonly used by O. megalodon over large temporal and spatial scales, reducing early mortality and playing a key role in maintaining viable adult populations. Ultimately, the presumed reliance of O. megalodon on the presence of suitable nursery grounds might have also been determinant in the demise of this iconic top predatory shark.


Assuntos
Tubarões , Animais , Humanos , Recém-Nascido , Comportamento Predatório , Espanha
3.
Curr Biol ; 30(23): 4808-4813.e3, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33007247

RESUMO

The evolutionary assembly of the vertebrate bodyplan has been characterized as a long-term ecological trend toward increasingly active and predatory lifestyles, culminating in jawed vertebrates that dominate modern vertebrate biodiversity [1-8]. This contrast is no more stark than between the earliest jawed vertebrates and their immediate relatives, the extinct jawless, dermal armor-encased osteostracans, which have conventionally been interpreted as benthic mud-grubbers with poor swimming capabilities and low maneuverability [9-12]. Using computational fluid dynamics, we show that osteostracan headshield morphology is compatible with a diversity of hydrodynamic efficiencies including passive control of water flow around the body; these could have increased versatility for adopting diverse locomotor strategies. Hydrodynamic performance varies with morphology, proximity to the substrate, and angle of attack (inclination). Morphotypes with dorsoventrally oblate headshields are hydrodynamically more efficient when swimming close to the substrate, whereas those with dorsoventrally more prolate headshields exhibit maximum hydrodynamic efficiency when swimming free from substrate effects. These results suggest different hydrofoil functions among osteostracan headshield morphologies, compatible with ecological diversification and undermining the traditional view that jawless stem-gnathostomes were ecologically constrained [9-12] with the origin of jaws as the key innovation that precipitated the ecological diversification of the group [13, 14].


Assuntos
Biodiversidade , Evolução Biológica , Peixes/fisiologia , Cabeça/anatomia & histologia , Animais , Simulação por Computador , Comportamento Alimentar/fisiologia , Peixes/anatomia & histologia , Fósseis/anatomia & histologia , Cabeça/fisiologia , Hidrodinâmica , Natação/fisiologia
4.
PeerJ ; 5: e4081, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29230354

RESUMO

Our knowledge about the body morphology of many extinct early vertebrates is very limited, especially in regard to their post-thoracic region. The prompt disarticulation of the dermo-skeletal elements due to taphonomic processes and the lack of a well-ossified endoskeleton in a large number of groups hinder the preservation of complete specimens. Previous reconstructions of most early vertebrates known from partial remains have been wholly based on phylogenetically closely related taxa. However, body design of fishes is determined, to a large extent, by their swimming mode and feeding niche, making it possible to recognise different morphological traits that have evolved several times in non-closely related groups with similar lifestyles. Based on this well-known ecomorphological correlation, here we propose a useful comparative framework established on extant taxa for predicting some anatomical aspects in extinct aquatic vertebrates from palaeoecological data and vice versa. For this, we have assessed the relationship between the locomotory patterns and the morphological variability of the caudal region in extant sharks by means of geometric morphometrics and allometric regression analysis. Multivariate analyses reveal a strong morphological convergence in non-closely related shark species that share similar modes of life, enabling the characterization of the caudal fin morphology of different ecological subgroups. In addition, interspecific positive allometry, affecting mainly the caudal fin span, has been detected. This phenomenon seems to be stronger in sharks with more pelagic habits, supporting its role as a compensation mechanism for the loss of hydrodynamic lift associated with the increase in body size, as previously suggested for many other living and extinct aquatic vertebrates. The quantification of shape change per unit size in each ecological subgroup has allowed us to establish a basis for inferring not only qualitative aspects of the caudal fin morphology of extinct early vertebrates but also to predict absolute values of other variables such as the fin span or the hypocercal and heterocercal angles. The application of this ecomorphological approach to the specific case of Dunkleosteus terrelli has led to a new reconstruction of this emblematic placoderm. Our proposal suggests a caudal fin with a well-developed ventral lobe, narrow peduncle and wide span, in contrast to classical reconstructions founded on the phylogenetic proximity with much smaller placoderms known from complete specimens. Interestingly, this prediction gains support with the recent discovery of fin distal elements (ceratotrichia) in a well preserved D. terrelli, which suggests a possible greater morphological variability in placoderm caudal fins than previously thought.

5.
PLoS One ; 12(2): e0172781, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28241029

RESUMO

Thelodonts are an enigmatic group of Paleozoic jawless vertebrates that have been well studied from taxonomical, biostratigraphic and paleogeographic points of view, although our knowledge of their ecology and mode of life is still scant. Their bodies were covered by micrometric scales whose morphology, histology and the developmental process are extremely similar to those of extant sharks. Based on these similarities and on the well-recognized relationship between squamation and ecology in sharks, here we explore the ecological diversity and lifestyles of thelodonts. For this we use classic morphometrics and discriminant analysis to characterize the squamation patterns of a significant number of extant shark species whose ecology is well known. Multivariate analyses have defined a characteristic squamation pattern for each ecological group, thus establishing a comparative framework for inferring lifestyles in thelodonts. We then use this information to study the squamation of the currently described 147 species of thelodonts, known from both articulated and disarticulated remains. Discriminant analysis has allowed recognizing squamation patterns comparable to those of sharks and links them to specific ecological groups. Our results suggest a remarkable ecological diversity in thelodonts. A large number of them were probably demersal species inhabiting hard substrates, within caves and crevices in rocky environments or reefs, taking advantage of the flexibility provided by their micromeric squamations. Contrary to classical interpretations, only few thelodonts were placed among demersal species inhabiting sandy and muddy substrates. Schooling species with defensive scales against ectoparasites could be also abundant suggesting that social interactions and pressure of ectoparasites were present in vertebrates as early the Silurian. The presence of species showing scales suggestive of low to moderate speed and a lifestyle presumably associated with open water environments indicates adaptation of thelodonts to deep water habitats. Scale morphology suggests that some other thelodonts were strong-swimming pelagic species, most of them radiating during the Early Devonian in association with the Nekton Revolution.


Assuntos
Ecologia , Ecossistema , Tubarões/fisiologia , Nadadeiras de Animais , Animais , Biodiversidade , Evolução Biológica , Feminino , Geografia , Masculino , Paleontologia/métodos , Parasitos , Natação
6.
J Exp Zool B Mol Dev Evol ; 320(8): 489-500, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23913546

RESUMO

Riedl's concept of burden neatly links development and evolution by ascertaining that structures that show a high degree of developmental co-dependencies with other structures are more constrained in evolution. The human skull can be precisely modeled as an articulated complex system of bones connected by sutures, forming a network of structural co-dependencies. We present a quantitative analysis of the morphological integration, modularity, and hierarchical organization of this human skull network model. Our overall results show that the human skull is a small-world network, with two well-delimited connectivity modules: one facial organized around the ethmoid bone, and one cranial organized around the sphenoid bone. Geometric morphometrics further support this two-module division, stressing the direct relationship between the developmental information enclosed in connectivity patterns and skull shape. Whereas the facial module shows a hierarchy of clustered blocks of bones, the bones of the cranial modules show a regular pattern of connections. We analyze the significance of these arrangements by hypothesizing specific structural roles for the most important bones involved in the formation of both modules, in the context of Riedl's burden. We conclude that it is the morphological integration of each group of bones that defines the semi-hierarchical organization of the human skull, reflecting fundamental differences in the ontogenetic patterns of growth and the structural constraints that generate each module. Our study also demonstrates the adequacy of network analysis as an innovative tool to understand the morphological complexity of anatomical systems.


Assuntos
Desenvolvimento Ósseo , Ossos Faciais/anatomia & histologia , Modelos Biológicos , Crânio/anatomia & histologia , Evolução Biológica , Ossos Faciais/crescimento & desenvolvimento , Humanos , Crânio/crescimento & desenvolvimento
7.
Biol Lett ; 8(5): 833-7, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22628098

RESUMO

Theories on the development and evolution of teeth have long been biased by the fallacy that chondrichthyans reflect the ancestral condition for jawed vertebrates. However, correctly resolving the nature of the primitive vertebrate dentition is challenged by a dearth of evidence on dental development in primitive osteichthyans. Jaw elements from the Silurian-Devonian stem-osteichthyans Lophosteus and Andreolepis have been described to bear a dentition arranged in longitudinal rows and vertical files, reminiscent of a pattern of successional development. We tested this inference, using synchrotron radiation X-ray tomographic microscopy (SRXTM) to reveal the pattern of skeletal development preserved in the sclerochronology of the mineralized tissues. The tooth-like tubercles represent focal elaborations of dentine within otherwise continuous sheets of the dermal skeleton, present in at least three stacked generations. Thus, the tubercles are not discrete modular teeth and their arrangement into rows and files is a feature of the dermal ornamentation that does not reflect a polarity of development or linear succession. These fossil remains have no bearing on the nature of the dentition in osteichthyans and, indeed, our results raise questions concerning the homologies of these bones and the phylogenetic classification of Andreolepis and Lophosteus.


Assuntos
Arcada Osseodentária/anatomia & histologia , Odontogênese , Dente/fisiologia , Vertebrados/fisiologia , Animais , Evolução Biológica , Dentina/fisiologia , Dentição , Fósseis , Arcada Osseodentária/fisiologia , Filogenia , Propriedades de Superfície , Síncrotrons , Dente/crescimento & desenvolvimento , Microtomografia por Raio-X/métodos
8.
J Anthropol Sci ; 89: 175-84, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21911916

RESUMO

Network theory has been extensively used to model the underlying structure of biological processes. From genetics to ecology, network thinking is changing our understanding of complex systems, specifically how their internal structure determines their overall behavior. Concepts such as hubs, scale-free or small-world networks, common in the complexity literature, are now used more and more in sociology, neurosciences, as well as other anthropological fields. Even though the use of network models is nowadays so widely applied, few attempts have been carried out to enrich our understanding in the classical morphological sciences such as in comparative anatomy or physical anthropology. The purpose of this article is to introduce the usage of network tools in morphology; specifically by building anatomical networks, dealing with the most common analyses and problems, and interpreting their outcome.


Assuntos
Anatomia Comparada , Antropologia Física , Modelos Biológicos , Teoria de Sistemas , Animais , Humanos
9.
Biol Direct ; 4: 41, 2009 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-19883502

RESUMO

BACKGROUND: Sequencing projects have allowed diverse retroviruses and LTR retrotransposons from different eukaryotic organisms to be characterized. It is known that retroviruses and other retro-transcribing viruses evolve from LTR retrotransposons and that this whole system clusters into five families: Ty3/Gypsy, Retroviridae, Ty1/Copia, Bel/Pao and Caulimoviridae. Phylogenetic analyses usually show that these split into multiple distinct lineages but what is yet to be understood is how deep evolution occurred in this system. RESULTS: We combined phylogenetic and graph analyses to investigate the history of LTR retroelements both as a tree and as a network. We used 268 non-redundant LTR retroelements, many of them introduced for the first time in this work, to elucidate all possible LTR retroelement phylogenetic patterns. These were superimposed over the tree of eukaryotes to investigate the dynamics of the system, at distinct evolutionary times. Next, we investigated phenotypic features such as duplication and variability of amino acid motifs, and several differences in genomic ORF organization. Using this information we characterized eight reticulate evolution markers to construct phenotypic network models. CONCLUSION: The evolutionary history of LTR retroelements can be traced as a time-evolving network that depends on phylogenetic patterns, epigenetic host-factors and phenotypic plasticity. The Ty1/Copia and the Ty3/Gypsy families represent the oldest patterns in this network that we found mimics eukaryotic macroevolution. The emergence of the Bel/Pao, Retroviridae and Caulimoviridae families in this network can be related with distinct inflations of the Ty3/Gypsy family, at distinct evolutionary times. This suggests that Ty3/Gypsy ancestors diversified much more than their Ty1/Copia counterparts, at distinct geological eras. Consistent with the principle of preferential attachment, the connectivities among phenotypic markers, taken as network-represented combinations, are power-law distributed. This evidences an inflationary mode of evolution where the system diversity; 1) expands continuously alternating vertical and gradual processes of phylogenetic divergence with episodes of modular, saltatory and reticulate evolution; 2) is governed by the intrinsic capability of distinct LTR retroelement host-communities to self-organize their phenotypes according to emergent laws characteristic of complex systems. REVIEWERS: This article was reviewed by Eugene V. Koonin, Eric Bapteste, and Enmanuelle Lerat (nominated by King Jordan).


Assuntos
Eucariotos/genética , Redes Reguladoras de Genes/genética , Filogenia , Retroelementos/genética , Sequências Repetidas Terminais/genética , Animais , Caulimoviridae/genética , Evolução Molecular , Marcadores Genéticos , Genoma/genética , Fenótipo , Retroviridae/genética
10.
Nature ; 448(7153): 583-6, 2007 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-17671501

RESUMO

Extant jawed vertebrates, or gnathostomes, fall into two major monophyletic groups, namely chondrichthyans (cartilaginous fishes) and osteichthyans (bony fishes and tetrapods). Fossil representatives of the osteichthyan crown group are known from the latest Silurian period, 418 million years (Myr) ago, to the present. By contrast, stem chondrichthyans and stem osteichthyans are still largely unknown. Two extinct Palaeozoic groups, the acanthodians and placoderms, may fall into these stem groups or the common stem group of gnathostomes, but their relationships and monophyletic status are both debated. Here we report unambiguous evidence for osteichthyan characters in jaw bones referred to the late Silurian (423-416-Myr-old) fishes Andreolepis hedei and Lophosteus superbus, long known from isolated bone fragments, scales and teeth, and whose affinities to, or within, osteichthyans have been debated. The bones are a characteristic osteichthyan maxillary and dentary, but the organization of the tooth-like denticles they bear differs from the large, conical teeth of crown-group osteichthyans, indicating that they can be assigned to the stem group. Andreolepis and Lophosteus are thus not only the oldest but also the most phylogenetically basal securely identified osteichthyans known so far.


Assuntos
Peixes/anatomia & histologia , Peixes/classificação , Arcada Osseodentária/anatomia & histologia , Filogenia , Dente/anatomia & histologia , Animais , Fósseis , História Antiga , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...