Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 41(33): 4042-4054, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35835853

RESUMO

LKB1 loss of function is one key oncogenic event in lung cancer. Clinical data suggest that LKB1 loss of function is associated with patients' smoking status. The responsible ingredients and molecular mechanisms in tobacco for LKB1 loss of function, however, are not defined. In this study, we reported that NNAL, a major metabolite of a tobacco-specific carcinogen NNK, induces LKB1 phosphorylation and its loss of function via the ß-AR/PKA signaling pathway in an isomer-dependent manner in human lung cancer cells. NNAL exposure also resulted in enhanced lung cancer cell migration and chemoresistance in an LKB1-dependent manner. A 120-day NNAL exposure in lung cancer cells, mimicking its chronic exposure among smokers, resulted in more prominent LKB1 phosphorylation, cell migration, and chemoresistance even in the absence of NNAL, indicating the long-lasting LKB1 loss of function although such an effect eventually disappeared after NNAL was removed for two months. These observations were confirmed in a lung cancer xenograft model. More importantly, human lung cancer tissues revealed elevated LKB1 phosphorylation in comparison to the paired normal lung tissues. These results suggest that LKB1 loss of function in human lung cancer could be extended to its phosphorylation, which may be mediated by NNAL from tobacco smoke in an isomer-dependent manner via the ß-AR/PKA signaling pathway.


Assuntos
Neoplasias Pulmonares , Nitrosaminas , Carcinógenos/metabolismo , Carcinógenos/toxicidade , Humanos , Neoplasias Pulmonares/metabolismo , Fosforilação , Fumar , Nicotiana/efeitos adversos , Nicotiana/metabolismo
2.
Nutrients ; 12(10)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33027883

RESUMO

Kava beverages are typically prepared from the root of Piper methysticum. They have been consumed among Pacific Islanders for centuries. Kava extract preparations were once used as herbal drugs to treat anxiety in Europe. Kava is also marketed as a dietary supplement in the U.S. and is gaining popularity as a recreational drink in Western countries. Recent studies suggest that kava and its key phytochemicals have anti-inflammatory and anticancer effects, in addition to the well-documented neurological benefits. While its beneficial effects are widely recognized, rare hepatotoxicity had been associated with use of certain kava preparations, but there are no validations nor consistent mechanisms. Major challenges lie in the diversity of kava products and the lack of standardization, which has produced an unmet need for quality initiatives. This review aims to provide the scientific community and consumers, as well as regulatory agencies, with a broad overview on kava use and its related research. We first provide a historical background for its different uses and then discuss the current state of the research, including its chemical composition, possible mechanisms of action, and its therapeutic potential in treating inflammatory and neurological conditions, as well as cancer. We then discuss the challenges associated with kava use and research, focusing on the need for the detailed characterization of kava components and associated risks such as its reported hepatotoxicity. Lastly, given its growing popularity in clinical and recreational use, we emphasize the urgent need for quality control and quality assurance of kava products, pharmacokinetics, absorption, distribution, metabolism, excretion, and foundational pharmacology. These are essential in order to inform research into the molecular targets, cellular mechanisms, and creative use of early stage human clinical trials for designer kava modalities to inform and guide the design and execution of future randomized placebo controlled trials to maximize kava's clinical efficacy and to minimize its risks.


Assuntos
Kava/química , Valor Nutritivo , Compostos Fitoquímicos/administração & dosagem , Extratos Vegetais/química , Anti-Inflamatórios , Antineoplásicos Fitogênicos , Ansiedade/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Suplementos Nutricionais , Humanos , Kava/efeitos adversos , Doenças do Sistema Nervoso/tratamento farmacológico , Compostos Fitoquímicos/efeitos adversos , Compostos Fitoquímicos/farmacocinética , Fitoterapia , Controle de Qualidade
4.
Bioorg Med Chem Lett ; 30(2): 126719, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31784319

RESUMO

Cytochrome P450 isozyme 1A2 (CYP1A2) is one main xenobiotic metabolizing enzyme in humans. It has been associated with the bioactivation of procarcinogens, including 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco specific and potent pulmonary carcinogen. This work describes the computational design and in-silico screening of potential CYP1A2 inhibitors, their chemical synthesis, and enzymatic characterization with the ultimate aim of assessing their potential as cancer chemopreventive agents. To achieve this, a combined classifiers model was used to screen a library of quinazoline-based molecules against known CYP1A2 inhibitors, non-inhibitors, and substrates to predict which quinazoline candidates had a better probability as an inhibitor. Compounds with high probability of CYP1A2 inhibition were further computationally evaluated via Glide docking. Candidates predicted to have selectivity and high binding affinity for CYP1A2 were synthesized and assayed for their enzymatic inhibition of CYP1A2, leading to the discovery of novel and potent quinazoline-based CYP1A2 inhibitors.


Assuntos
Citocromo P-450 CYP1A2/química , Desenho de Fármacos , Quinazolinas/química , Sítios de Ligação , Citocromo P-450 CYP1A2/metabolismo , Inibidores do Citocromo P-450 CYP1A2/síntese química , Inibidores do Citocromo P-450 CYP1A2/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Quinazolinas/metabolismo , Relação Estrutura-Atividade
5.
Planta Med ; 86(1): 26-31, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31711251

RESUMO

Kava, the extract of the roots of Piper methysticum, has been traditionally consumed in the South Pacific islands for its natural relaxing property. Epidemiological data suggests that kava consumption may reduce human cancer risk, and in vitro and in vivo models suggest chemopreventive potential against carcinogen-induced tumorigenesis. Therefore, knowledge about its molecular mechanisms and responsible ingredient(s) for these beneficial properties will better guide kava's use for the management of these disorders. Psychological stress typically results in increased production of stress hormones, such as norepinephrine (NE), which activate adrenergic receptors (ARs). Psychological stress has also been associated with increased cancer incidence and poor clinical outcomes in cancer patients. Mechanistically, binding of NE to ARs induces intracellular calcium influx, which activates downstream signaling pathways involved in both stress and cancer development. In this study, we characterized the effect of kava and its components, 3 fractions and 6 major kavalactones, on NE-induced intracellular calcium influx in H1299, a human non-small cell lung carcinoma cell line. Results show that kava extract effectively inhibits NE-mediated intracellular calcium influx in H1299 cells, potentially through antagonizing ß-AR signaling. This inhibitory activity is recapitulated by the major kavalactones in kava. Among the 6 major kavalactones, DHK demonstrated the best potency. Taken together, our study suggests a novel mechanism through which kava and its ingredients potentially offer the anxiolytic and cancer-preventive activity.


Assuntos
Ansiolíticos/isolamento & purificação , Antineoplásicos Fitogênicos/isolamento & purificação , Cálcio/metabolismo , Kava/química , Lactonas/farmacologia , Neoplasias Pulmonares/prevenção & controle , Extratos Vegetais/farmacologia , Ansiolíticos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Humanos , Lactonas/isolamento & purificação , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/psicologia , Norepinefrina/antagonistas & inibidores , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...