Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891838

RESUMO

Nanoparticles (NPs) are becoming increasingly important novel materials for many purposes, including basic research, medicine, agriculture, and engineering. Increasing human and environmental exposure to these promising compounds requires assessment of their potential health risks. While the general direct cytotoxicity of NPs is often routinely measured, more indirect possible long-term effects, such as reproductive or developmental neurotoxicity (DNT), have been studied only occasionally and, if so, mostly on non-human animal models, such as zebrafish embryos. In this present study, we employed a well-characterized human neuronal precursor cell line to test the concentration-dependent DNT of green-manufactured copper sulfide (CuS) nanoparticles on crucial early events in human brain development. CuS NPs turned out to be generally cytotoxic in the low ppm range. Using an established prediction model, we found a clear DNT potential of CuS NPs on neuronal precursor cell migration and neurite outgrowth, with IC50 values 10 times and 5 times, respectively, lower for the specific DNT endpoint than for general cytotoxicity. We conclude that, in addition to the opportunities of NPs, their risks to human health should be carefully considered.


Assuntos
Cobre , Nanopartículas Metálicas , Neurônios , Humanos , Cobre/toxicidade , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Neurônios/efeitos dos fármacos , Sulfetos/toxicidade , Sulfetos/química , Movimento Celular/efeitos dos fármacos , Linhagem Celular , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/patologia , Nanopartículas/toxicidade , Nanopartículas/química , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Sobrevivência Celular/efeitos dos fármacos
2.
Discov Nano ; 19(1): 8, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175418

RESUMO

This study reports the effects of a computationally informed and avocado-seed mediated Phyto engineered CuS nanoparticles as fertilizing agent on the ionome and amino acid metabolome of Pinto bean seeds using both bench top and ion beam analytical techniques. Physico-chemical analysis of the Phyto engineered nanoparticles with scanning-electron microscopy, transmission electron microscopy, X-ray diffraction, and Fourier Transform Infrared Spectroscopy confirmed the presence of CuS nanoparticles. Molecular dynamics simulations to investigate the interaction of some active phytocompounds in avocado seeds that act as reducing agents with the nano-digenite further showed that 4-hydroxybenzoic acid had a higher affinity for interacting with the nanoparticle's surface than other active compounds. Seeds treated with the digenite nanoparticles exhibited a unique ionome distribution pattern as determined with external beam proton-induced X-ray emission, with hotspots of Cu and S appearing in the hilum and micropyle area that indicated a possible uptake mechanism via the seed coat. The nano-digenite also triggered a plant stress response by slightly altering seed amino acid metabolism. Ultimately, the nano-digenite may have important implications as a seed protective or nutritive agent as advised by its unique distribution pattern and effect on amino acid metabolism.

3.
Molecules ; 25(16)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781741

RESUMO

Cu(II) and Zn(II) morpholinyldithiocarbamato complexes, formulated as [Cu(MphDTC)2] and [Zn(µ-MphDTC)2(MphDTC)2], where MphDTC is morpholinyldithiocarbamate were synthesized and characterized by elemental analysis, spectroscopic techniques and single-crystal X-ray crystallography. The molecular structure of the Cu(II) complex revealed a mononuclear compound in which the Cu(II) ion was bonded to two morpholinyl dithiocarbamate ligands to form a four-coordinate distorted square planar geometry. The molecular structure of the Zn(II) complex was revealed to be dinuclear, and each metal ion was bonded to two morpholinyl dithiocarbamate bidentate anions, one acting as chelating ligand, the other as a bridge between the two Zn(II) ions. The anticancer activity of the morpholinyldithiocarbamate ligand, Cu(II) and Zn(II) complexes were evaluated against renal (TK10), melanoma (UACC62) and breast (MCF7) cancer cells by a Sulforhodamine B (SRB) assay. Morpholinyldithiocarbamate was more active than the standard drug parthenolide against renal and breast cancer cell lines, and [Zn(µ-MphDTC)2(MphDTC)2] was the most active complex against breast cancer. The copper(II) complex had a comparable activity with the standard against renal and breast cancer cell lines but showed an enhanced potency against melanoma when compared to parthenolide.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Cobre/química , Tiocarbamatos/química , Zinco/química , Antineoplásicos/química , Linhagem Celular Tumoral , Técnicas de Química Sintética , Complexos de Coordenação/química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Molecular
4.
Nanomaterials (Basel) ; 8(12)2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30558103

RESUMO

The Nanomaterials Editorial Office has been made aware that the published paper [...].

5.
Nanomaterials (Basel) ; 7(2)2017 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-28336865

RESUMO

We report the synthesis and structural studies of copper sulfide nanocrystals from copper (II) dithiocarbamate single molecule precursors. The precursors were thermolysed in hexadecylamine (HDA) to prepare HDA-capped CuS nanocrystals. The optical properties of the nanocrystals studied using UV-visible and photoluminescence spectroscopy showed absorption band edges at 287 nm that are blue shifted, and the photoluminescence spectra show emission curves that are red-shifted with respect to the absorption band edges. These shifts are as a result of the small crystallite sizes of the nanoparticles leading to quantum size effects. The structural studies were carried out using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and atomic force microscopy. The XRD patterns indicates that the CuS nanocrystals are in hexagonal covellite crystalline phases with estimated particles sizes of 17.3-18.6 nm. The TEM images showed particles with almost spherical or rod shapes, with average crystallite sizes of 3-9.8 nm. SEM images showed morphology with ball-like microspheres on the surfaces, and EDS spectra confirmed the presence of CuS nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...