Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mov Sci ; 30(2): 262-78, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21440318

RESUMO

We investigated the adaptation of balancing behavior during a continuous, predictable perturbation of stance consisting of 3-min backward and forward horizontal sinusoidal oscillations of the support base. Two visual conditions (eyes-open, EO; eyes-closed, EC) and two oscillation frequencies (LF, 0.2 Hz; HF, 0.6 Hz) were used. Center of Mass (CoM) and Center of Pressure (CoP) oscillations and EMG of Soleus (Sol) and Tibialis Anterior (TA) were recorded. The time course of each variable was estimated through an exponential model. An adaptation index allowed comparison of the degree of adaptation of different variables. Muscle activity pattern was initially prominent under the more challenging conditions (HF, EC and EO; LF, EC) and diminished progressively to reach a steady state. At HF, the behavior of CoM and CoP was almost invariant. The time-constant of EMG adaptation was shorter for TA than for Sol. With EC, the adaptation index showed a larger decay in the TA than Sol activity at the end of the balancing trial, pointing to a different role of the two muscles in the adaptation process. At LF, CoM and CoP oscillations increased during the balancing trial to match the platform translations. This occurred regardless of the different EMG patterns under EO and EC. Contrary to CoM and CoP, the adaptation of the muscle activities had a similar time-course at both HF and LF, in spite of the two frequencies implying a different number of oscillation cycles. During adaptation, under critical balancing conditions (HF), postural muscle activity is tuned to that sufficient for keeping CoM within narrow limits. On the contrary, at LF, when vision permits, a similar decreasing pattern of muscle activity parallels a progressive increase in CoM oscillation amplitude, and the adaptive balancing behavior shifts from the initially reactive behavior to one of passive riding the platform. Adaptive balance control would rely on on-line computation of risk of falling and sensory inflow, while minimizing balance challenge and muscle effort. The results from this study contribute to the understanding of plasticity of the balance control mechanisms under posture-challenging conditions.


Assuntos
Contração Isométrica/fisiologia , Cinestesia/fisiologia , Músculo Esquelético/fisiologia , Orientação/fisiologia , Equilíbrio Postural/fisiologia , Percepção Visual/fisiologia , Suporte de Carga/fisiologia , Adulto , Fenômenos Biomecânicos , Eletromiografia , Feminino , Humanos , Masculino , Analisadores Neurais/fisiologia , Propriocepção/fisiologia , Privação Sensorial/fisiologia , Processamento de Sinais Assistido por Computador , Adulto Jovem
2.
Hum Mov Sci ; 27(3): 473-95, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18342382

RESUMO

The paper presents a control model of body sway in quiet standing, which aims at achieving bounded stability by means of an intermittent control mechanism. Control bursts are generated when the current state vector exits an area of uncertainty around the reference point in the phase plane. This area is determined by the limited resolution of proprioceptive signals and the burst generation mechanism is predictive in the sense that it incorporates a rough, but working knowledge (internal model) of the biomechanics of the human inverted pendulum. We show that such a model, in spite of its simplicity and of the fact that it relies on very noisy measurements, is robust and can explain in a detailed way the measured sway patterns.


Assuntos
Fenômenos Biomecânicos , Atividade Motora/fisiologia , Postura , Antropometria , Humanos , Modelos Biológicos , Torque
3.
Hum Mov Sci ; 24(4): 588-615, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16143414

RESUMO

This paper reviews different approaches for explaining body sway while quiet standing that directly address the instability of the human inverted pendulum. We argue that both stiffness control [Winter, D. A., Patla, A. E., Riedtyk, S., & Ishac, M. (2001). Ankle muscle stiffness in the control of balance during quiet standing. Journal of Neurophysiology, 85, 2630-2633] and continuous feedback control by means of a PID (Proportional, Integral, Derivative) mechanism [Peterka, R. J. (2000). Postural control model interpretation of stabilogram diffusion analysis. Biological Cybernetics, 83, 335-343.] can guarantee asymptotic stability of controlled posture at the expense of unrealistic assumptions: the level of intrinsic muscle stiffness in the former case, and the level of background noise in the latter, which also determines an unrealistic level of jerkiness in the sway. We show that the decomposition of the control action into a slow and a fast component (rambling and trembling, respectively, as proposed by [Zatsiorsky, V. M., & Duarte, M. (1999). Instant equilibrium point and its migration in standing tasks: Rambling and trembling components of the stabilogram. Motor Control, 4, 185-200; Zatsiorsky, V. M., & Duarte, M. (2000). Rambling and trembling in quiet standing. Motor Control, 4, 185-200.]) is useful but must be modified in order to take into account that rambling is not a stable equilibrium trajectory. We address the possibility of a form of stability weaker than asymptotic stability in light of the intermittent stabilization mechanism outlined by [Loram, I. D., & Lakie, M. (2002a). Human balancing of an inverted pendulum: position control by small, ballistic-like, throw and catch movements. Journal of Physiology, 540, 1111-1124.], and propose an indicator of intermittent stabilization that is related to the phase portrait of the human inverted pendulum. This indicator provides a further argument against the plausibility of PID-like control mechanisms. Finally, we draw attention to the sliding mode control theory that provides a useful theoretical framework for formulating realistic intermittent, stabilization models.


Assuntos
Equilíbrio Postural , Postura , Adulto , Feminino , Humanos , Masculino , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...