Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-26274284

RESUMO

The nonlinear stability of the asymptotic suction boundary layer is studied numerically, searching for finite-amplitude solutions that bifurcate from the laminar flow state. By changing the boundary conditions for disturbances at the plate from the classical no-slip condition to more physically sound ones, the stability characteristics of the flow may change radically, both for the linearized as well as the nonlinear problem. The wall boundary condition takes into account the permeability K̂ of the plate; for very low permeability, it is acceptable to impose the classical boundary condition (K̂=0). This leads to a Reynolds number of approximately Re(c)=54400 for the onset of linearly unstable waves, and close to Re(g)=3200 for the emergence of nonlinear solutions [F. A. Milinazzo and P. G. Saffman, J. Fluid Mech. 160, 281 (1985); J. H. M. Fransson, Ph.D. thesis, Royal Institute of Technology, KTH, Sweden, 2003]. However, for larger values of the plate's permeability, the lower limit for the existence of linear and nonlinear solutions shifts to significantly lower Reynolds numbers. For the largest permeability studied here, the limit values of the Reynolds numbers reduce down to Re(c)=796 and Re(g)=294. For all cases studied, the solutions bifurcate subcritically toward lower Re, and this leads to the conjecture that they may be involved in the very first stages of a transition scenario similar to the classical route of the Blasius boundary layer initiated by Tollmien-Schlichting (TS) waves. The stability of these nonlinear solutions is also investigated, showing a low-frequency main unstable mode whose growth rate decreases with increasing permeability and with the Reynolds number, following a power law Re(-ρ), where the value of ρ depends on the permeability coefficient K̂. The nonlinear dynamics of the flow in the vicinity of the computed finite-amplitude solutions is finally investigated by direct numerical simulations, providing a viable scenario for subcritical transition due to TS waves.

2.
Phys Rev Lett ; 109(15): 154502, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23102315

RESUMO

Elastic filamentous structures found on swimming and flying organisms are versatile in function, rendering their precise contribution to locomotion difficult to assess. We show in this Letter that a single passive filament hinged on the rear of a bluff body placed in a stream can generate a net lift force without increasing the mean drag force on the body. This is a consequence of spontaneous symmetry breaking in the filament's flapping dynamics. The phenomenon is related to a resonance between the frequency associated with the von Kármán vortex street developing behind the bluff body and the natural frequency of the free bending vibrations of the filament.

3.
J Biomech Eng ; 134(8): 084501, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22938361

RESUMO

The direct infusion of an agent into a solid tumor, modeled as a spherical poroelastic material with anisotropic dependence of the tumor hydraulic conductivity upon the tissue deformation, is treated both by solving the coupled fluid/elastic equations, and by expressing the solution as an asymptotic expansion in terms of a small parameter, ratio between the driving pressure force in the fluid system, and the elastic properties of the solid. Results at order one match almost perfectly the solutions of the full system over a large range of infusion pressures. Comparison with experimental results is acceptable after the hydraulic conductivity of the medium is properly calibrated. Given the uncertain estimates of some model constants, the order zero solution of the expansion, for which fluid and porous matrix are decoupled, yields acceptable values and trends for all the physical fields of interest, rendering the coupled analysis (in the limit of small displacements) of little use. When the deformation of the tissue becomes large nonlinear elasticity theory must be resorted to.


Assuntos
Antineoplásicos/administração & dosagem , Biomimética/métodos , Elasticidade , Neoplasias/patologia , Anisotropia , Antineoplásicos/metabolismo , Porosidade , Pressão
4.
Phys Rev Lett ; 106(13): 134502, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21517387

RESUMO

We determine the initial condition on the laminar-turbulent boundary closest to the laminar state using nonlinear optimization for plane Couette flow. Resorting to the general evolution criterion of nonequilibrium systems we optimize the route to the statistically steady turbulent state, i.e., the state characterized by the largest entropy production. This is the first time information from the fully turbulent state is included in the optimization procedure. We demonstrate that the optimal initial condition is localized in space for realistic flow domains.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(6 Pt 2): 065305, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19658554

RESUMO

A nonlinear streamwise traveling-wave solution is obtained by homotopy for square duct flow. For a particular symmetry of the perturbations, this wave comes into existence at about Re(b)=600 (based on half-duct width and bulk speed) for a streamwise wave number alpha=0.85 . The resulting four-vortex mean flow resembles the transitional flow structures observed in previous simulations.

6.
Philos Trans A Math Phys Eng Sci ; 367(1888): 529-44, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-18990658

RESUMO

This paper is concerned with the transition of the laminar flow in a duct of square cross section. As in the similar case of pipe flow, the motion is linearly stable for all Reynolds numbers, rendering this flow a suitable candidate for a study of the 'bypass' path to turbulence. It has already been shown that the classical linear optimal perturbation problem, yielding optimal disturbances in the form of longitudinal vortices, fails to provide an 'optimal' path to turbulence, i.e. optimal perturbations do not elicit a significant nonlinear response from the flow. Previous simulations have also indicated that a pair of travelling waves generates immediately, by nonlinear quadratic interactions, an unstable mean flow distortion, responsible for rapid breakdown. By the use of functions quantifying the sensitivity of the motion to deviations in the base flow, the optimal travelling wave associated with its specific defect is found by a variational approach. This optimal solution is then integrated in time and shown to display a qualitative similarity to the so-called 'minimal defect', for the same parameters. Finally, numerical simulations of an 'edge state' are conducted, to identify an unstable solution that mediates laminar-turbulent transition and relate it to results of the optimization procedure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...