Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 70(2): 1123-8, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14766596

RESUMO

Initial denitration of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Rhodococcus sp. strain DN22 produces CO2 and the dead-end product 4-nitro-2,4-diazabutanal (NDAB), OHCNHCH2NHNO2, in high yield. Here we describe experiments to determine the biodegradability of NDAB in liquid culture and soils containing Phanerochaete chrysosporium. A soil sample taken from an ammunition plant contained RDX (342 micromol kg(-1)), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 3,057 micromol kg(-1)), MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine; 155 micromol kg(-1)), and traces of NDAB (3.8 micromol kg(-1)). The detection of the last in real soil provided the first experimental evidence for the occurrence of natural attenuation that involved ring cleavage of RDX. When we incubated the soil with strain DN22, both RDX and MNX (but not HMX) degraded and produced NDAB (388 +/- 22 micromol kg(-1)) in 5 days. Subsequent incubation of the soil with the fungus led to the removal of NDAB, with the liberation of nitrous oxide (N2O). In cultures with the fungus alone NDAB degraded to give a stoichiometric amount of N2O. To determine C stoichiometry, we first generated [14C]NDAB in situ by incubating [14C]RDX with strain DN22, followed by incubation with the fungus. The production of 14CO2 increased from 30 (DN22 only) to 76% (fungus). Experiments with pure enzymes revealed that manganese-dependent peroxidase rather than lignin peroxidase was responsible for NDAB degradation. The detection of NDAB in contaminated soil and its effective mineralization by the fungus P. chrysosporium may constitute the basis for the development of bioremediation technologies.


Assuntos
Aldeídos/metabolismo , Compostos Aza/metabolismo , Phanerochaete/metabolismo , Poluentes do Solo/metabolismo , Triazinas/metabolismo , Biodegradação Ambiental , Meios de Cultura , Resíduos Industriais , Phanerochaete/crescimento & desenvolvimento , Solo/análise
2.
Inorg Chem ; 35(17): 5068-5071, 1996 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-11666716

RESUMO

The infrared and Raman spectra of the NH(4)(+), K(+), and Cs(+) salts of N(NO(2))(2)(-) in the solid state and in solution have been measured and are assigned with the help of ab initio calculations at the HF/6-31G and MP2/6-31+G levels of theory. In agreement with the variations observed in the crystal structures, the vibrational spectra of the N(NO(2))(2)(-) anion are also strongly influenced by the counterions and the physical state. Whereas the ab initio calculations for the free N(NO(2))(2)(-) ion indicate a minimum energy structure of C(2) symmetry, Raman polarization measurements on solutions of the N(NO(2))(2)(-) anion suggest point group C(1) (i.e., no symmetry). This is attributed to the very small (<3 kcal/mol) N-NO(2) rotational barrier in N(NO(2))(2)(-) which allows for easy deformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...