Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 26(24): R1266-R1267, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27997833

RESUMO

Many coral reef fish larvae spend days to months in the open ocean before settlement on coral reefs [1]. Early in development, larvae have limited swimming capabilities and will therefore be greatly affected by currents. This can potentially result in dispersal distances of tens of kilometers [2]. Nevertheless, up to 60 % of surviving larvae have been shown to return to their natal reefs [2]. To home, the larvae must develop strong swimming capabilities and appropriate orientation mechanisms. Most late-stage larval reef fish can, after being passively drifted for days to weeks, swim strongly [3], and Ostorhinchus doederleini larvae have been shown to use chemotaxis to identify their natal reef once in its vicinity [2] and a sun compass for longer distance orientation [4] during the day. But how do they orient at night? Here, we show that newly settled fish caught at One Tree Island (OTI) at the Capricorn Bunker Reef Group (Great Barrier Reef) can use geomagnetic compass information to keep a south-east heading. This behavior might help them return to their natal reef in the absence of any celestial cues at night.


Assuntos
Peixes/fisiologia , Campos Magnéticos , Resposta Táctica/fisiologia , Animais , Recifes de Corais , Larva/fisiologia , Orientação
2.
Sci Rep ; 5: 14323, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26388258

RESUMO

Migratory birds can use a variety of environmental cues for orientation. A primary calibration between the celestial and magnetic compasses seems to be fundamental prior to a bird's first autumn migration. Releasing hand-raised or rescued young birds back into the wild might therefore be a problem because they might not have established a functional orientation system during their first calendar year. Here, we test whether hand-raised European robins that did not develop any functional compass before or during their first autumn migration could relearn to orient if they were exposed to natural celestial cues during the subsequent winter and spring. When tested in the geomagnetic field without access to celestial cues, these birds could orient in their species-specific spring migratory direction. In contrast, control birds that were deprived of any natural celestial cues throughout remained unable to orient. Our experiments suggest that European robins are still capable of establishing a functional orientation system after their first autumn. Although the external reference remains speculative, most likely, natural celestial cues enabled our birds to calibrate their magnetic compass. Our data suggest that avian compass systems are more flexible than previously believed and have implications for the release of hand-reared migratory birds.


Assuntos
Magnetismo , Orientação , Sensação , Aves Canoras/fisiologia , Migração Animal , Animais , Calibragem , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...