Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 679: 205-214, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37708579

RESUMO

According to the fatty acid and headgroup compositions of the phospholipids (PL) from Hevea brasiliensis latex, three synthetic PL were selected (i.e. POPA: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate POPC: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and POPG: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol) to investigate the effect of PL headgroup on the interactions with two major proteins of Hevea latex, i.e. Rubber Elongation Factor (REF1) and Small Rubber Particle Protein (SRPP1). Protein/lipid interactions were screened using two models (lipid vesicles in solution or lipid monolayers at air/liquid interface). Calcein leakage, surface pressure, ellipsometry, microscopy and spectroscopy revealed that both REF1 and SRPP1 displayed stronger interactions with anionic POPA and POPG, as compared to zwitterionic POPC. A particular behavior of REF1 was observed when interacting with POPA monolayers (i.e. aggregation + modification of secondary structure from α-helices to ß-sheets, characteristic of its amyloid aggregated form), which might be involved in the irreversible coagulation mechanism of Hevea rubber particles.


Assuntos
Hevea , Fosfolipídeos , Fosfolipídeos/metabolismo , Hevea/química , Hevea/metabolismo , Látex/química , Látex/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Estrutura Secundária de Proteína
2.
Biochim Biophys Acta Biomembr ; 1859(2): 201-210, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27871841

RESUMO

Rubber particle membranes from the Hevea latex contain predominantly two proteins, REF1 and SRPP1 involved in poly(cis-1,4-isoprene) synthesis or rubber quality. The repartition of both proteins on the small or large rubber particles seems to differ, but their role in the irreversible coagulation of the rubber particle is still unknown. In this study we highlighted the different modes of interactions of both recombinant proteins with different classes of lipids extracted from Hevea brasiliensis latex, and defined as phospholipids (PL), glycolipids (GL) and neutral lipids (NL). We combined two biophysical methods, polarization modulated-infrared reflection adsorption spectroscopy (PM-IRRAS) and ellipsometry to elucidate their interactions with monolayers of each class of lipids. REF1 and SRPP1 interactions with native lipids are clearly different; SRPP1 interacts mostly in surface with PL, GL or NL, without modification of its structure. In contrast REF1 inserts deeply in the lipid monolayers with all lipid classes. With NL, REF1 is even able to switch from α-helice conformation to ß-sheet structure, as in its aggregated form (amyloid form). Interaction between REF1 and NL may therefore have a specific role in the irreversible coagulation of rubber particles.


Assuntos
Hevea/metabolismo , Látex/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Borracha/metabolismo , Glicolipídeos/metabolismo , Hemiterpenos/metabolismo , Fosfolipídeos/metabolismo , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Proteínas Recombinantes/metabolismo
3.
Curr Biol ; 24(10): 1126-32, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24794299

RESUMO

Plasma membrane tension and the pressure generated by actin polymerization are two antagonistic forces believed to define the protrusion rate at the leading edge of migrating cells [1-5]. Quantitatively, resistance to actin protrusion is a product of membrane tension and mean local curvature (Laplace's law); thus, it depends on the local geometry of the membrane interface. However, the role of the geometry of the leading edge in protrusion control has not been yet investigated. Here, we manipulate both the cell shape and substrate topography in the model system of persistently migrating fish epidermal keratocytes. We find that the protrusion rate does not correlate with membrane tension, but, instead, strongly correlates with cell roundness, and that the leading edge of the cell exhibits pinning on substrate ridges-a phenomenon characteristic of spreading of liquid drops. These results indicate that the leading edge could be considered a triple interface between the substrate, membrane, and extracellular medium and that the contact angle between the membrane and the substrate determines the load on actin polymerization and, therefore, the protrusion rate. Our findings thus illuminate a novel relationship between the 3D shape of the cell and its dynamics, which may have implications for cell migration in 3D environments.


Assuntos
Actinas/química , Membrana Celular/fisiologia , Forma Celular , Characidae/fisiologia , Células Epiteliais/citologia , Animais , Movimento Celular , Células Epidérmicas , Polimerização , Pressão
4.
Lab Chip ; 11(22): 3855-63, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-21964858

RESUMO

We propose a new technique to measure the volume of adherent migrating cells. The method is based on a negative staining where a fluorescent, non-cell-permeant dye is added to the extracellular medium. The specimen is observed with a conventional fluorescence microscope in a chamber of uniform height. Given that the fluorescence signal depends on the thickness of the emitting layer, the objects excluding the fluorescent dye (i.e., cells) appear dark, and the decrease of the fluorescent signal with respect to the background is expected to give information about the height and the volume of the object. Using a glass microfabricated pattern with steps of defined heights, we show that the drop in fluorescence intensity is indeed proportional to the height of the step and obtain calibration curves relating fluorescence intensity to height. The technique, termed the fluorescence displacement method, is further validated by comparing our measurements with the ones obtained by atomic force microscopy (AFM). We apply our method to measure the real-time volume dynamics of migrating fish epidermal keratocytes subjected to osmotic stress. The fluorescence displacement technique allows fast and precise monitoring of cell height and volume, thus providing a valuable tool for characterizing the three-dimensional behaviour of migrating cells.


Assuntos
Movimento Celular , Tamanho Celular , Microscopia de Fluorescência/métodos , Animais , Calibragem , Adesão Celular , Characidae , Corantes Fluorescentes/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Modelos Lineares , Camundongos , Células NIH 3T3 , Pressão Osmótica , Reprodutibilidade dos Testes
5.
Lab Chip ; 10(1): 86-91, 2010 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20024055

RESUMO

An alternative method of micro/nano-transport has been achieved by using motor proteins. Microtubules on a kinesin-coated surface have potential to act as a nano-transport system. When microtubules are used as carriers, either cargo or cargo linkers are attached on the microtubule surface. Such cargo attachments can significantly affect kinesin motion. To deal with the difficulty caused by molecular attachment to the microtubule surface, the cargo loading and transport mechanism should be separated. In this work, we propose to use micromachined needles as cargo carriers which then can be transported on microtubules. Because of the separation of needle functionalization and transport mechanism, functionalization of the needles can proceed without any effect on the microtubule structure, significantly increasing the possible types of cargo. We have fabricated silicon needles in mass numbers using a simple and effective method and have shown that the microtubule-needle composites are transported without affecting the kinesin activity.


Assuntos
Cinesinas/química , Técnicas Analíticas Microfluídicas/instrumentação , Microtúbulos/química , Proteínas Motores Moleculares/química , Nanoestruturas , Desenho de Equipamento , Humanos , Técnicas Analíticas Microfluídicas/métodos , Movimento (Física) , Silício/química , Propriedades de Superfície , Tubulina (Proteína)/química
6.
Lab Chip ; 9(12): 1694-700, 2009 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-19495452

RESUMO

We demonstrate the active transport of liquid cargos in the form of oil-in-water emulsion droplets loaded on kinesin motor proteins moving along oriented microtubules. We analyze the motility properties of the kinesin motors (velocity and run length) and find that the liquid cargo in the form of oil droplets does not alter the motor function of the kinesin molecules. This work provides a novel method for handling only a few molecules/particles encapsulated inside the oil droplets and represents a key finding for the integration of kinesin-based active transport into nanoscale lab-on-a-chip devices. We also investigate the effect of the diameter of the droplets on the motility properties of the kinesin motors. The velocity is approximately constant irrespective of the diameter of the droplets whereas we highlight a strong increase of the run length when the diameter of the droplets increases. We correlate these results with the number of kinesin motors involved in the transport process and find an excellent agreement between our experimental result and a theoretical model.

7.
Langmuir ; 24(19): 10901-9, 2008 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-18759387

RESUMO

Puroindolines (PINs), basic and cysteine-rich proteins of wheat endosperm, are composed of two proteins, puroindoline-a (PIN-a) and puroindoline-b (PIN-b). Using a monolayer assay at the air/liquid interface, both PIN-a and PIN-b were studied in pure components and mixed with wheat galactolipids, 1,2-di-O-acyl-3-O-(beta-d-galactopyranosyl)- sn-glycerol (MGDG) and 2-di-O-acyl-3-O-(beta-d-galactopyranosyl-1,6-beta-d-galactopyranosyl)-sn-glycerol (DGDG). Following the adsorption of PINs at the air/liquid interface thanks to surface pressure increases, we concluded that PIN-a displays a more amphipathic character than PIN-b. Compression isotherms combined with ellipsometric measurements showed that the area per molecule is smaller and the protein film is more condensed for PIN-a than for PIN-b. According to the polarization modulation-infrared reflection-absorption spectroscopy data, both proteins display a highly alpha-helical structure and the alpha-helices are oriented rather parallel to the interface. By measuring the overpressure due to PIN adsorption into MGDG and DGDG monolayers, we observed that PIN-a interacts more strongly into lipid films than PIN-b. The observation by atomic force microscopy of mixed protein/lipid films showed that the nature of the lipid plays a significant role in the organization of PINs, particularly for PIN-a. The presence of galactolipids at the interface stabilizes the alpha-helical structure of PINs, but significant changes were observed concerning the orientation of the alpha-helices. They adopt a perfect parallel orientation to the interface in the MGDG monolayer, whereas the bundle of alpha-helices orients normal to the interface in the DGDG film.


Assuntos
Galactolipídeos/química , Indóis/química , Triticum/química , Adsorção , Gases/química , Microscopia de Força Atômica , Modelos Moleculares , Conformação Molecular , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...