Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(11): 108110, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37860691

RESUMO

In neuropathic pain, recent evidence has highlighted a sex-dependent role of the P2X4 receptor in spinal microglia in the development of tactile allodynia following nerve injury. Here, using internalization-defective P2X4mCherryIN knockin mice (P2X4KI), we demonstrate that increased cell surface expression of P2X4 induces hypersensitivity to mechanical stimulations and hyperexcitability in spinal cord neurons of both male and female naive mice. During neuropathy, both wild-type (WT) and P2X4KI mice of both sexes develop tactile allodynia accompanied by spinal neuron hyperexcitability. These responses are selectively associated with P2X4, as they are absent in global P2X4KO or myeloid-specific P2X4KO mice. We show that P2X4 is de novo expressed in reactive microglia in neuropathic WT and P2X4KI mice of both sexes and that tactile allodynia is relieved by pharmacological blockade of P2X4 or TrkB. These results show that the upregulation of P2X4 in microglia is crucial for neuropathic pain, regardless of sex.

2.
Cells ; 12(19)2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37830593

RESUMO

Purines are required for fundamental biological processes and alterations in their metabolism lead to severe genetic diseases associated with developmental defects whose etiology remains unclear. Here, we studied the developmental requirements for purine metabolism using the amphibian Xenopus laevis as a vertebrate model. We provide the first functional characterization of purine pathway genes and show that these genes are mainly expressed in nervous and muscular embryonic tissues. Morphants were generated to decipher the functions of these genes, with a focus on the adenylosuccinate lyase (ADSL), which is an enzyme required for both salvage and de novo purine pathways. adsl.L knockdown led to a severe reduction in the expression of the myogenic regulatory factors (MRFs: Myod1, Myf5 and Myogenin), thus resulting in defects in somite formation and, at later stages, the development and/or migration of both craniofacial and hypaxial muscle progenitors. The reduced expressions of hprt1.L and ppat, which are two genes specific to the salvage and de novo pathways, respectively, resulted in similar alterations. In conclusion, our data show for the first time that de novo and recycling purine pathways are essential for myogenesis and highlight new mechanisms in the regulation of MRF gene expression.


Assuntos
Músculo Esquelético , Purinas , Animais , Xenopus laevis/genética , Músculo Esquelético/metabolismo , Purinas/metabolismo , Desenvolvimento Muscular/genética
3.
Nat Commun ; 14(1): 1160, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859433

RESUMO

By endowing light control of neuronal activity, optogenetics and photopharmacology are powerful methods notably used to probe the transmission of pain signals. However, costs, animal handling and ethical issues have reduced their dissemination and routine use. Here we report LAKI (Light Activated K+ channel Inhibitor), a specific photoswitchable inhibitor of the pain-related two-pore-domain potassium TREK and TRESK channels. In the dark or ambient light, LAKI is inactive. However, alternating transdermal illumination at 365 nm and 480 nm reversibly blocks and unblocks TREK/TRESK current in nociceptors, enabling rapid control of pain and nociception in intact and freely moving mice and nematode. These results demonstrate, in vivo, the subcellular localization of TREK/TRESK at the nociceptor free nerve endings in which their acute inhibition is sufficient to induce pain, showing LAKI potential as a valuable tool for TREK/TRESK channel studies. More importantly, LAKI gives the ability to reversibly remote-control pain in a non-invasive and physiological manner in naive animals, which has utility in basic and translational pain research but also in in vivo analgesic drug screening and validation, without the need of genetic manipulations or viral infection.


Assuntos
Dor , Canais de Potássio de Domínios Poros em Tandem , Animais , Camundongos , Avaliação Pré-Clínica de Medicamentos , Nociceptores , Nematoides , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores
4.
Front Pharmacol ; 14: 1288994, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239187

RESUMO

Introduction: Attention deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder characterized by hyperactivity, inattention, and impulsivity that often persist until adulthood. Frequent comorbid disorders accompany ADHD and two thirds of children diagnosed with ADHD also suffer from behavioural disorders and from alteration of sensory processing. We recently characterized the comorbidity between ADHD-like symptoms and pain sensitisation in a pharmacological mouse model of ADHD, and we demonstrated the implication of the anterior cingulate cortex and posterior insula. However, few studies have explored the causal mechanisms underlying the interactions between ADHD and pain. The implication of inflammatory mechanisms has been suggested but the signalling pathways involved have not been explored. Methods: We investigated the roles of purinergic signalling, at the crossroad of pain and neuroinflammatory pathways, by using a transgenic mouse line that carries a total deletion of the P2X4 receptor. Results: We demonstrated that P2X4 deletion prevents hyperactivity in the mouse model of ADHD. In contrast, the absence of P2X4 lowered thermal pain thresholds in sham conditions and did not affect pain sensitization in ADHD-like conditions. We further analysed microglia reactivity and the expression of inflammatory markers in wild type and P2X4KO mice. Our results revealed that P2X4 deletion limits microglia reactivity but at the same time exerts proinflammatory effects in the anterior cingulate cortex and posterior insula. Conclusion: This dual role of P2X4 could be responsible for the differential effects noted on ADHD-like symptoms and pain sensitization and calls for further studies to investigate the therapeutic benefit of targeting the P2X4 receptor in ADHD patients.

5.
Cell Mol Life Sci ; 79(8): 431, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35852606

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal motoneuron (MN) disease characterized by protein misfolding and aggregation leading to cellular degeneration. So far neither biomarker, nor effective treatment has been found. ATP signaling and P2X4 receptors (P2X4) are upregulated in various neurodegenerative diseases. Here we show that several ALS-related misfolded proteins including mutants of SOD1 or TDP-43 lead to a significant increase in surface P2X4 receptor density and function in vitro. In addition, we demonstrate in the spinal the cord of SOD1-G93A (SOD1) mice that misfolded SOD1-G93A proteins directly interact with endocytic adaptor protein-2 (AP2); thus, acting as negative competitors for the interaction between AP2 and P2X4, impairing constitutive P2X4 endocytosis. The higher P2X4 surface density was particularly observed in peripheral macrophages of SOD1 mice before the onset and during the progression of ALS symptoms positioning P2X4 as a potential early biomarker for ALS. P2X4 expression was also upregulated in spinal microglia of SOD1 mice during ALS and affect microglial inflammatory responses. Importantly, we report using double transgenic SOD1 mice expressing internalization-defective P2X4mCherryIN knock-in gene or invalidated for the P2X4 gene that P2X4 is instrumental for motor symptoms, ALS progression and survival. This study highlights the role of P2X4 in the pathophysiology of ALS and thus its potential for the development of biomarkers and treatments. We also decipher the molecular mechanism by which misfolded proteins related to ALS impact P2X4 trafficking at early pathological stage in cells expressing-P2X4.


Assuntos
Esclerose Lateral Amiotrófica , Doença dos Neurônios Motores , Receptores Purinérgicos P2X4 , Superóxido Dismutase-1 , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Camundongos , Camundongos Transgênicos , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Medula Espinal/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
6.
Commun Biol ; 4(1): 1158, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620987

RESUMO

The enpp ectonucleotidases regulate lipidic and purinergic signalling pathways by controlling the extracellular concentrations of purines and bioactive lipids. Although both pathways are key regulators of kidney physiology and linked to human renal pathologies, their roles during nephrogenesis remain poorly understood. We previously showed that the pronephros was a major site of enpp expression and now demonstrate an unsuspected role for the conserved vertebrate enpp4 protein during kidney formation in Xenopus. Enpp4 over-expression results in ectopic renal tissues and, on rare occasion, complete mini-duplication of the entire kidney. Enpp4 is required and sufficient for pronephric markers expression and regulates the expression of RA, Notch and Wnt pathway members. Enpp4 is a membrane protein that binds, without hydrolyzing, phosphatidylserine and its effects are mediated by the receptor s1pr5, although not via the generation of S1P. Finally, we propose a novel and non-catalytic mechanism by which lipidic signalling regulates nephrogenesis.


Assuntos
Padronização Corporal/genética , Rim/fisiologia , Diester Fosfórico Hidrolases/fisiologia , Transdução de Sinais , Proteínas de Xenopus/fisiologia , Xenopus laevis/genética , Animais , Embrião não Mamífero/embriologia , Desenvolvimento Embrionário , Redes Reguladoras de Genes , Rim/embriologia , Diester Fosfórico Hidrolases/genética , Proteínas de Xenopus/genética , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/metabolismo
7.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207150

RESUMO

P2X7 receptors (P2X7) are cationic channels involved in many diseases. Following their activation by extracellular ATP, distinct signaling pathways are triggered, which lead to various physiological responses such as the secretion of pro-inflammatory cytokines or the modulation of cell death. P2X7 also exhibit unique behaviors, such as "macropore" formation, which corresponds to enhanced large molecule cell membrane permeability and current facilitation, which is caused by prolonged activation. These two phenomena have often been confounded but, thus far, no clear mechanisms have been resolved. Here, by combining different approaches including whole-cell and single-channel recordings, pharmacological and biochemical assays, CRISPR/Cas9 technology and cell imaging, we provide evidence that current facilitation and macropore formation involve functional complexes comprised of P2X7 and TMEM16, a family of Ca2+-activated ion channel/scramblases. We found that current facilitation results in an increase of functional complex-embedded P2X7 open probability, a result that is recapitulated by plasma membrane cholesterol depletion. We further show that macropore formation entails two distinct large molecule permeation components, one of which requires functional complexes featuring TMEM16F subtype, the other likely being direct permeation through the P2X7 pore itself. Such functional complexes can be considered to represent a regulatory hub that may orchestrate distinct P2X7 functionalities.


Assuntos
Anoctaminas/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/metabolismo , Algoritmos , Animais , Anoctaminas/química , Sistemas CRISPR-Cas , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Colesterol/metabolismo , Células HEK293 , Humanos , Imuno-Histoquímica , Modelos Biológicos , Oócitos , Receptores Purinérgicos P2X7/química
8.
Mol Psychiatry ; 26(2): 629-644, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-31911635

RESUMO

ATP signaling and surface P2X4 receptors are upregulated selectively in neurons and/or glia in various CNS disorders including anxiety, chronic pain, epilepsy, ischemia, and neurodegenerative diseases. However, the cell-specific functions of P2X4 in pathological contexts remain elusive. To elucidate P2X4 functions, we created a conditional transgenic knock-in P2X4 mouse line (Floxed P2X4mCherryIN) allowing the Cre activity-dependent genetic swapping of the internalization motif of P2X4 by the fluorescent mCherry protein to prevent constitutive endocytosis of P2X4. By combining molecular, cellular, electrophysiological, and behavioral approaches, we characterized two distinct knock-in mouse lines expressing noninternalized P2X4mCherryIN either exclusively in excitatory forebrain neurons or in all cells natively expressing P2X4. The genetic substitution of wild-type P2X4 by noninternalized P2X4mCherryIN in both knock-in mouse models did not alter the sparse distribution and subcellular localization of P2X4 but increased the number of P2X4 receptors at the surface of the targeted cells mimicking the pathological increased surface P2X4 state. Increased surface P2X4 density in the hippocampus of knock-in mice altered LTP and LTD plasticity phenomena at CA1 synapses without affecting basal excitatory transmission. Moreover, these cellular events translated into anxiolytic effects and deficits in spatial memory. Our results show that increased surface density of neuronal P2X4 contributes to synaptic deficits and alterations in anxiety and memory functions consistent with the implication of P2X4 in neuropsychiatric and neurodegenerative disorders. Furthermore, these conditional P2X4mCherryIN knock-in mice will allow exploring the cell-specific roles of P2X4 in various physiological and pathological contexts.


Assuntos
Ansiedade , Memória , Receptores Purinérgicos P2X4 , Sinapses , Animais , Ansiedade/genética , Técnicas de Introdução de Genes , Hipocampo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal , Neurônios , Receptores Purinérgicos P2X4/genética
9.
J Neurosci Methods ; 348: 108997, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33188801

RESUMO

Chronic pain is a maladaptive neurological disease that remains a major health problem. A deepening of our knowledge on mechanisms that cause pain is a prerequisite to developing novel treatments. A large variety of animal models of pain has been developed that recapitulate the diverse symptoms of different pain pathologies. These models reproduce different pain phenotypes and remain necessary to examine the multidimensional aspects of pain and understand the cellular and molecular basis underlying pain conditions. In this review, we propose an overview of animal models, from simple organisms to rodents and non-human primates and the specific traits of pain pathologies they model. We present the main behavioral tests for assessing pain and investing the underpinning mechanisms of chronic pathological pain. The validity of animal models is analysed based on their ability to mimic human clinical diseases and to predict treatment outcomes. Refine characterization of pathological phenotypes also requires to consider pain globally using specific procedures dedicated to study emotional comorbidities of pain. We discuss the limitations of pain models when research findings fail to be translated from animal models to human clinics. But we also point to some recent successes in analgesic drug development that highlight strategies for improving the predictive validity of animal models of pain. Finally, we emphasize the importance of using assortments of preclinical pain models to identify pain subtype mechanisms, and to foster the development of better analgesics.


Assuntos
Analgésicos , Dor Crônica , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Primatas
10.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182845

RESUMO

Activation of the P2X7 receptor results in the opening of a large pore that plays a role in immune responses, apoptosis, and many other physiological and pathological processes. Here, we investigated the role of conserved and unique residues in the extracellular vestibule connecting the agonist-binding domain with the transmembrane domain of rat P2X7 receptor. We found that all residues that are conserved among the P2X receptor subtypes respond to alanine mutagenesis with an inhibition (Y51, Q52, and G323) or a significant decrease (K49, G326, K327, and F328) of 2',3'-O-(benzoyl-4-benzoyl)-ATP (BzATP)-induced current and permeability to ethidium bromide, while the nonconserved residue (F322), which is also present in P2X4 receptor, responds with a 10-fold higher sensitivity to BzATP, much slower deactivation kinetics, and a higher propensity to form the large dye-permeable pore. We examined the membrane expression of conserved mutants and found that Y51, Q52, G323, and F328 play a role in the trafficking of the receptor to the plasma membrane, while K49 controls receptor responsiveness to agonists. Finally, we studied the importance of the physicochemical properties of these residues and observed that the K49R, F322Y, F322W, and F322L mutants significantly reversed the receptor function, indicating that positively charged and large hydrophobic residues are important at positions 49 and 322, respectively. These results show that clusters of conserved residues above the transmembrane domain 1 (K49-Y51-Q52) and transmembrane domain 2 (G326-K327-F328) are important for receptor structure, membrane expression, and channel gating and that the nonconserved residue (F322) at the top of the extracellular vestibule is involved in hydrophobic inter-subunit interaction which stabilizes the closed state of the P2X7 receptor channel.


Assuntos
Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência Conservada , Células HEK293 , Humanos , Ativação do Canal Iônico , Cinética , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Ratos , Receptores Purinérgicos P2X7/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Eletricidade Estática
11.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003406

RESUMO

Purinergic P2X receptors (P2X) are ATP-gated ion channels widely expressed in the CNS. While the direct contribution of P2X to synaptic transmission is uncertain, P2X reportedly affect N-methyl-D-aspartate receptor (NMDAR) activity, which has given rise to competing theories on the role of P2X in the modulation of synapses. However, P2X have also been shown to participate in receptor cross-talk: an interaction where one receptor (e.g., P2X2) directly influences the activity of another (e.g., nicotinic, 5-HT3 or GABA receptors). In this study, we tested for interactions between P2X2 or P2X4 and NMDARs. Using two-electrode voltage-clamp electrophysiology experiments in Xenopus laevis oocytes, we demonstrate that both P2X2 and P2X4 interact with NMDARs in an inhibited manner. When investigating the molecular domains responsible for this phenomenon, we found that the P2X2 c-terminus (CT) could interfere with both P2X2 and P2X4 interactions with NMDARs. We also report that 11 distal CT residues on the P2X4 facilitate the P2X4-NMDAR interaction, and that a peptide consisting of these P2X4 CT residues (11C) can disrupt the interaction between NMDARs and P2X2 or P2X4. Collectively, these results provide new evidence for the modulatory nature of P2X2 and P2X4, suggesting they might play a more nuanced role in the CNS.


Assuntos
Receptores de N-Metil-D-Aspartato/genética , Receptores Purinérgicos P2X/genética , Sinapses/genética , Trifosfato de Adenosina/metabolismo , Animais , Neurônios/metabolismo , Oócitos/metabolismo , Técnicas de Patch-Clamp , Receptor Cross-Talk/fisiologia , Receptores de GABA/genética , Receptores Purinérgicos P2X4/genética , Transmissão Sináptica/genética , Xenopus laevis/genética , Xenopus laevis/fisiologia
12.
Neurosci Bull ; 36(11): 1327-1343, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32889635

RESUMO

The P2X4 receptor (P2X4) is an ATP-gated cation channel that is highly permeable to Ca2+ and widely expressed in neuronal and glial cell types throughout the central nervous system (CNS). A growing body of evidence indicates that P2X4 plays key roles in numerous central disorders. P2X4 trafficking is highly regulated and consequently in normal situations, P2X4 is present on the plasma membrane at low density and found mostly within intracellular endosomal/lysosomal compartments. An increase in the de novo expression and/or surface density of P2X4 has been observed in microglia and/or neurons during pathological states. This review aims to summarize knowledge on P2X4 functions in CNS disorders and provide some insights into the relative contributions of neuronal and glial P2X4 in pathological contexts. However, determination of the cell-specific functions of P2X4 along with its intracellular and cell surface roles remain to be elucidated before its potential as a therapeutic target in multiple disorders can be defined.


Assuntos
Doenças do Sistema Nervoso Central , Microglia , Neurônios/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Trifosfato de Adenosina , Sistema Nervoso Central , Humanos , Microglia/metabolismo
14.
Methods Mol Biol ; 2041: 243-259, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31646494

RESUMO

Xenopus oocytes serve as a standard heterologous expression system for the study of various ligand-gated ion channels including ATP P2X receptors. Here we describe the whole-cell two-electrode voltage clamp and biotinylation/Western blotting techniques to investigate the functional properties and surface trafficking from P2X-expressing oocytes.


Assuntos
Trifosfato de Adenosina/metabolismo , Biotinilação/métodos , Membrana Celular/metabolismo , Eletrofisiologia/métodos , Oócitos/fisiologia , Receptores Purinérgicos P2X/fisiologia , Xenopus laevis/fisiologia , Animais , Western Blotting , Movimento Celular , Ativação do Canal Iônico , Oócitos/citologia , Técnicas de Patch-Clamp/métodos
15.
Front Cell Neurosci ; 13: 340, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31402854

RESUMO

P2X receptors are ATP-gated cations channels formed by the homo or hetero-trimeric association from the seven cloned subunits (P2X1-7). P2X receptors are widely distributed in different organs and cell types throughout the body including the nervous system and are involved in a large variety of physiological but also pathological processes in adult mammals. However, their expression and function during embryogenesis remain poorly understood. Here, we report the cloning and the comparative expression map establishment of the entire P2X subunit family in the clawed frog Xenopus. Orthologous sequences for 6 mammalian P2X subunits were identified in both X. laevis and X. tropicalis, but not for P2X3 subunit, suggesting a potential loss of this subunit in the Pipidae family. Three of these genes (p2rx1, p2rx2, and p2rx5) exist as homeologs in the pseudoallotetraploid X. laevis, making a total of 9 subunits in this species. Phylogenetic analyses demonstrate the high level of conservation of these receptors between amphibian and other vertebrate species. RT-PCR revealed that all subunits are expressed during the development although zygotic p2rx6 and p2rx7 transcripts are mainly detected at late organogenesis stages. Whole mount in situ hybridization shows that each subunit displays a specific spatio-temporal expression profile and that these subunits can therefore be grouped into two groups, based on their expression or not in the developing nervous system. Overlapping expression in the central and peripheral nervous system and in the sensory organs suggests potential heteromerization and/or redundant functions of P2X subunits in Xenopus embryos. The developmental expression of the p2rx subunit family during early phases of embryogenesis indicates that these subunits may have distinct roles during vertebrate development, especially embryonic neurogenesis.

16.
Cell Rep ; 27(13): 3860-3872.e4, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242419

RESUMO

Astrocytes constantly adapt their ramified morphology in order to support brain cell assemblies. Such plasticity is partly mediated by ion and water fluxes, which rely on the water channel aquaporin-4 (AQP4). The mechanism by which this channel locally contributes to process dynamics has remained elusive. Using a combination of single-molecule and calcium imaging approaches, we here investigated in hippocampal astrocytes the dynamic distribution of the AQP4 isoforms M1 and M23. Surface AQP4-M1 formed small aggregates that contrast with the large AQP4-M23 clusters that are enriched near glutamatergic synapses. Strikingly, stabilizing surface AQP4-M23 tuned the motility of astrocyte processes and favors glutamate synapse activity. Furthermore, human autoantibodies directed against AQP4 from neuromyelitis optica (NMO) patients impaired AQP4-M23 dynamic distribution and, consequently, astrocyte process and synaptic activity. Collectively, it emerges that the membrane dynamics of AQP4 isoform regulate brain cell assemblies in health and autoimmune brain disease targeting AQP4.


Assuntos
Aquaporina 4/imunologia , Astrócitos/imunologia , Hipocampo/imunologia , Neuromielite Óptica/imunologia , Sinapses/imunologia , Animais , Astrócitos/patologia , Autoanticorpos/imunologia , Cálcio/imunologia , Hipocampo/patologia , Humanos , Neuromielite Óptica/patologia , Transporte Proteico/imunologia , Ratos , Ratos Sprague-Dawley , Sinapses/patologia
17.
Cell Rep ; 23(6): 1678-1690, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29742425

RESUMO

The external globus pallidus (GP) is a key GABAergic hub in the basal ganglia (BG) circuitry, a neuronal network involved in motor control. In Parkinson's disease (PD), the rate and pattern of activity of GP neurons are profoundly altered and contribute to the motor symptoms of the disease. In rodent models of PD, the striato-pallidal pathway is hyperactive, and extracellular GABA concentrations are abnormally elevated in the GP, supporting the hypothesis of an alteration of neuronal and/or glial clearance of GABA. Here, we discovered the existence of persistent GABAergic tonic inhibition in GP neurons of dopamine-depleted (DD) rodent models. We showed that glial GAT-3 transporters are downregulated while neuronal GAT-1 function remains normal in DD rodents. Finally, we showed that blocking GAT-3 activity in vivo alters the motor coordination of control rodents, suggesting that GABAergic tonic inhibition in the GP contributes to the pathophysiology of PD.


Assuntos
Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Globo Pálido/patologia , Globo Pálido/fisiopatologia , Inibição Neural , Neurônios/patologia , Doença de Parkinson/fisiopatologia , Animais , Dopamina/deficiência , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Globo Pálido/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos Sprague-Dawley , Receptores Dopaminérgicos/metabolismo , Receptores de GABA/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Ácido gama-Aminobutírico/farmacologia
18.
Neural Plast ; 2017: 9454275, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28845311

RESUMO

Communication between neuronal and glial cells is important for neural plasticity. P2X receptors are ATP-gated cation channels widely expressed in the brain where they mediate action of extracellular ATP released by neurons and/or glia. Recent data show that postsynaptic P2X receptors underlie slow neuromodulatory actions rather than fast synaptic transmission at brain synapses. Here, we review these findings with a particular focus on the release of ATP by astrocytes and the diversity of postsynaptic P2X-mediated modulation of synaptic strength and plasticity in the CNS.


Assuntos
Trifosfato de Adenosina/metabolismo , Astrócitos/metabolismo , Plasticidade Neuronal/fisiologia , Receptores Purinérgicos P2X/metabolismo , Sinapses/metabolismo , Animais , Transmissão Sináptica/fisiologia
19.
Sci Transl Med ; 8(366): 366ra162, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27881823

RESUMO

Ion channels are desirable therapeutic targets, yet ion channel-directed drugs with high selectivity and few side effects are still needed. Unlike small-molecule inhibitors, antibodies are highly selective for target antigens but mostly fail to antagonize ion channel functions. Nanobodies-small, single-domain antibody fragments-may overcome these problems. P2X7 is a ligand-gated ion channel that, upon sensing adenosine 5'-triphosphate released by damaged cells, initiates a proinflammatory signaling cascade, including release of cytokines, such as interleukin-1ß (IL-1ß). To further explore its function, we generated and characterized nanobodies against mouse P2X7 that effectively blocked (13A7) or potentiated (14D5) gating of the channel. Systemic injection of nanobody 13A7 in mice blocked P2X7 on T cells and macrophages in vivo and ameliorated experimental glomerulonephritis and allergic contact dermatitis. We also generated nanobody Dano1, which specifically inhibited human P2X7. In endotoxin-treated human blood, Dano1 was 1000 times more potent in preventing IL-1ß release than small-molecule P2X7 antagonists currently in clinical development. Our results show that nanobody technology can generate potent, specific therapeutics against ion channels, confirm P2X7 as a therapeutic target for inflammatory disorders, and characterize a potent new drug candidate that targets P2X7.


Assuntos
Trifosfato de Adenosina/química , Inflamação/imunologia , Antagonistas do Receptor Purinérgico P2X/química , Receptores Purinérgicos P2X7/química , Anticorpos de Domínio Único/química , Animais , Anticorpos Monoclonais/química , Morte Celular , Linhagem Celular , Proliferação de Células , Dermatite Alérgica de Contato/terapia , Feminino , Glomerulonefrite/terapia , Células HEK293 , Humanos , Interleucina-1beta/química , Ligantes , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Linfócitos T/citologia
20.
Sci Rep ; 6: 31836, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27624155

RESUMO

Plasticity at excitatory synapses can be induced either by synaptic release of glutamate or the release of gliotransmitters such as ATP. Recently, we showed that postsynaptic P2X2 receptors activated by ATP released from astrocytes downregulate synaptic AMPAR, providing a novel mechanism by which glial cells modulate synaptic activity. ATP- and lNMDA-induced depression in the CA1 region of the hippocampus are additive, suggesting distinct molecular pathways. AMPARs are homo-or hetero-tetramers composed of GluA1-A4. Here, we first show that P2X2-mediated AMPAR inhibition is dependent on the subunit composition of AMPAR. GluA3 homomers are insensitive and their presence in heteromers alters P2X-mediated inhibition. Using a mutational approach, we demonstrate that the two CaMKII phosphorylation sites S567 and S831 located in the cytoplasmic Loop1 and C-terminal tail of GluA1 subunits, respectively, are critical for P2X2-mediated AMPAR inhibition recorded from co-expressing Xenopus oocytes and removal of surface AMPAR at synapses of hippocampal neurons imaged by the super-resolution dSTORM technique. Finally, using phosphorylation site-specific antibodies, we show that P2X-induced depression in hippocampal slices produces a dephosphorylation of the GluA1 subunit at S567, contrary to NMDAR-mediated LTD. These findings indicate that GluA1 phosphorylation of S567 and S831 is critical for P2X2-mediated AMPAR internalization and ATP-driven synaptic depression.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Regulação da Expressão Gênica , Hipocampo/fisiologia , Processamento de Proteína Pós-Traducional , Receptores de AMPA/metabolismo , Receptores Purinérgicos P2X2/metabolismo , Sinapses/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Humanos , Fosforilação , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...