Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
BMC Biol ; 21(1): 23, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737789

RESUMO

BACKGROUND: Cancer heterogeneity is a main obstacle for the development of effective therapies, as its replication in in vitro preclinical models is challenging. Around 96% of developed drugs are estimated to fail from discovery to the clinical trial phase probably because of the unsuitability and unreliability of current preclinical models (Front Pharmacol 9:6, 2018; Nat Rev Cancer 8: 147-56, 2008) in replicating the overall biology of tumors, for instance the tumor microenvironment. Breast cancer is the most frequent cancer among women causing the greatest number of cancer-related deaths. Breast cancer can typically be modeled in vitro through the use of tumoroids; however, current approaches using mouse tumoroids fail to reproduce crucial aspect of human breast cancer, while access to human cells is limited and the focus of ethical concerns. New models of breast cancer, such as companion dogs, have emerged given the resemblance of developed spontaneous mammary tumors to human breast cancer in many clinical and molecular aspects; however, they have so far failed to replicate the tumor microenvironment. The present work aimed at developing a robust canine mammary tumor model in the form of tumoroids which recapitulate the tumor diversity and heterogeneity. RESULTS: We conducted a complete characterization of canine mammary tumoroids through histologic, molecular, and proteomic analysis, demonstrating their strong similarity to the primary tumor. We demonstrated that these tumoroids can be used as a drug screening model. In fact, we showed that paclitaxel, a human chemotherapeutic, could kill canine tumoroids with the same efficacy as human tumoroids with 0.1 to 1 µM of drug needed to kill 50% of the cells. Due to easy tissue availability, canine tumoroids can be produced at larger scale and cryopreserved to constitute a biobank. We have demonstrated that cryopreserved tumoroids keep the same histologic and molecular features (ER, PR, and HER2 expression) as fresh tumoroids. Furthermore, two cryopreservation techniques were compared from a proteomic point of view which showed that tumoroids made from frozen material allowed to maintain the same molecular diversity as from freshly dissociated tumor. CONCLUSIONS: These findings revealed that canine mammary tumoroids can be easily generated and may provide an adequate and more reliable preclinical model to investigate tumorigenesis mechanisms and develop new treatments for both veterinary and human medicine.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Animais , Cães , Feminino , Humanos , Neoplasias da Mama/patologia , Neoplasias Mamárias Animais/diagnóstico , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Proteômica , Pesquisa Translacional Biomédica , Microambiente Tumoral
2.
Elife ; 112022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35302491

RESUMO

A rare but severe complication of curative-intent radiation therapy is the induction of second primary cancers. These cancers preferentially develop not inside the planning target volume (PTV) but around, over several centimeters, after a latency period of 1-40 years. We show here that normal human or mouse dermal fibroblasts submitted to the out-of-field dose scattering at the margin of a PTV receiving a mimicked patient's treatment do not die but enter in a long-lived senescent state resulting from the accumulation of unrepaired DNA single-strand breaks, in the almost absence of double-strand breaks. Importantly, a few of these senescent cells systematically and spontaneously escape from the cell cycle arrest after a while to generate daughter cells harboring mutations and invasive capacities. These findings highlight single-strand break-induced senescence as the mechanism of second primary cancer initiation, with clinically relevant spatiotemporal specificities. Senescence being pharmacologically targetable, they open the avenue for second primary cancer prevention.


Assuntos
Reparo do DNA , Segunda Neoplasia Primária , Animais , Carcinogênese , Transformação Celular Neoplásica , Senescência Celular , Quebras de DNA de Cadeia Simples , Dano ao DNA , Camundongos
3.
Clin Chem ; 67(11): 1513-1523, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34586394

RESUMO

BACKGROUND: Formalin-fixed paraffin-embedded (FFPE) tissue has been the gold standard for routine pathology for general and cancer postoperative diagnostics. Despite robust histopathology, immunohistochemistry, and molecular methods, accurate diagnosis remains difficult for certain cases. Overall, the entire process can be time consuming, labor intensive, and does not reach over 90% diagnostic sensitivity and specificity. There is a growing need in onco-pathology for adjunct novel rapid, accurate, reliable, diagnostically sensitive, and specific methods for high-throughput biomolecular identification. Lipids have long been considered only as building blocks of cell membranes or signaling molecules, but have recently been introduced as central players in cancer. Due to sample processing, which limits their detection, lipid analysis directly from unprocessed FFPE tissues has never been reported. METHODS: We present a proof-of-concept with direct analysis of tissue-lipidomic signatures from FFPE tissues without dewaxing and minimal sample preparation using water-assisted laser desorption ionization mass spectrometry and deep-learning. RESULTS: On a cohort of difficult canine and human sarcoma cases, classification for canine sarcoma subtyping was possible with 99.1% accuracy using "5-fold" and 98.5% using "leave-one-patient out," and 91.2% accuracy for human sarcoma using 5-fold and 73.8% using leave-one-patient out. The developed classification model enabled stratification of blind samples in <5 min and showed >95% probability for discriminating 2 human sarcoma blind samples. CONCLUSION: It is possible to create a rapid diagnostic platform to screen clinical FFPE tissues with minimal sample preparation for molecular pathology.


Assuntos
Lipidômica , Sarcoma , Animais , Cães , Formaldeído/química , Humanos , Lasers , Inclusão em Parafina , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fixação de Tecidos/métodos , Água
4.
Oncotarget ; 11(7): 671-686, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32133044

RESUMO

Purpose: F14512 is an epipodophyllotoxin derivative from etoposide, combined with a spermine moiety introduced as a cell delivery vector. The objective of this study was to compare the safety and antitumor activity of F14512 and etoposide phosphate in dogs with spontaneous non-Hodgkin lymphoma (NHL) and to investigate the potential benefit of F14512 in P-glycoprotein (Pgp) overexpressing lymphomas. Experimental Design: Forty-eight client-owned dogs with intermediate to high-grade NHL were enrolled into a randomized, double-blind trial of F14512 versus etoposide phosphate. Endpoints included safety and therapeutic efficacy. Results: Twenty-five dogs were randomized to receive F14512 and 23 dogs to receive etoposide phosphate. All adverse events (AEs) were reversible, and no treatment-related death was reported. Hematologic AEs were more severe with F14512 and gastrointestinal AEs were more frequent with etoposide phosphate. F14512 exhibited similar response rate and progression-free survival (PFS) as etoposide phosphate in the global treated population. Subgroup analysis of dogs with Pgp-overexpressing NHL showed a significant improvement in PFS in dogs treated with F14512 compared with etoposide phosphate. Conclusion: F14512 showed strong therapeutic efficacy against spontaneous NHL and exhibited a clinical benefice in Pgp-overexpressing lymphoma superior to etoposide phosphate. The results clearly justify the evaluation of F14512 in human clinical trials.

5.
Stem Cell Reports ; 13(1): 10-20, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31204299

RESUMO

During normal mammary gland development, s-SHIP promoter expression marks a distinct type of mammary stem cells, at two different stages, puberty and early mid-pregnancy. To determine whether s-SHIP is a marker of mammary cancer stem cells (CSCs), we generated bitransgenic mice by crossing the C3(1)-SV40 T-antigen transgenic mouse model of breast cancer, and a transgenic mouse (11.5kb-GFP) expressing green fluorescent protein from the s-SHIP promoter. Here we show that in mammary tumors originating in these bitransgenic mice, s-SHIP promoter expression enriches a rare cell population with CSC activity as demonstrated by sphere-forming assays in vitro and limiting dilution transplantation in vivo. These s-SHIP-positive CSCs are characterized by lower expression of Delta-like non-canonical Notch ligand 1 (DLK1), a negative regulator of the Notch pathway. Inactivation of Dlk1 in s-SHIP-negative tumor cells increases their tumorigenic potential, suggesting a role for DLK1 in mammary cancer stemness.


Assuntos
Neoplasias da Mama/etiologia , Neoplasias da Mama/metabolismo , Expressão Gênica , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Regiões Promotoras Genéticas , Animais , Neoplasias da Mama/patologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Autorrenovação Celular/genética , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genes Reporter , Humanos , Imunofenotipagem , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Camundongos , Camundongos Transgênicos
6.
J Hepatol ; 70(5): 963-973, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30677458

RESUMO

BACKGROUND & AIMS: Although the role of inflammation to combat infection is known, the contribution of metabolic changes in response to sepsis is poorly understood. Sepsis induces the release of lipid mediators, many of which activate nuclear receptors such as the peroxisome proliferator-activated receptor (PPAR)α, which controls both lipid metabolism and inflammation. We aimed to elucidate the previously unknown role of hepatic PPARα in the response to sepsis. METHODS: Sepsis was induced by intraperitoneal injection of Escherichia coli in different models of cell-specific Ppara-deficiency and their controls. The systemic and hepatic metabolic response was analyzed using biochemical, transcriptomic and functional assays. PPARα expression was analyzed in livers from elective surgery and critically ill patients and correlated with hepatic gene expression and blood parameters. RESULTS: Both whole body and non-hematopoietic Ppara-deficiency in mice decreased survival upon bacterial infection. Livers of septic Ppara-deficient mice displayed an impaired metabolic shift from glucose to lipid utilization resulting in more severe hypoglycemia, impaired induction of hyperketonemia and increased steatosis due to lower expression of genes involved in fatty acid catabolism and ketogenesis. Hepatocyte-specific deletion of PPARα impaired the metabolic response to sepsis and was sufficient to decrease survival upon bacterial infection. Hepatic PPARA expression was lower in critically ill patients and correlated positively with expression of lipid metabolism genes, but not with systemic inflammatory markers. CONCLUSION: During sepsis, Ppara-deficiency in hepatocytes is deleterious as it impairs the adaptive metabolic shift from glucose to FA utilization. Metabolic control by PPARα in hepatocytes plays a key role in the host defense against infection. LAY SUMMARY: As the main cause of death in critically ill patients, sepsis remains a major health issue lacking efficacious therapies. While current clinical literature suggests an important role for inflammation, metabolic aspects of sepsis have mostly been overlooked. Here, we show that mice with an impaired metabolic response, due to deficiency of the nuclear receptor PPARα in the liver, exhibit enhanced mortality upon bacterial infection despite a similar inflammatory response, suggesting that metabolic interventions may be a viable strategy for improving sepsis outcomes.


Assuntos
Adaptação Fisiológica , Fígado/metabolismo , PPAR alfa/fisiologia , Sepse/metabolismo , Animais , Infecções Bacterianas/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Humanos , Inflamação/etiologia , Camundongos , Camundongos Endogâmicos C57BL
7.
BMC Cancer ; 18(1): 1219, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514258

RESUMO

BACKGROUND: Metastatic melanoma is one of the most aggressive forms of cancer in humans. Among its types, mucosal melanomas represent one of the most highly metastatic and aggressive forms, with a very poor prognosis. Because they are rare in Caucasian individuals, unlike cutaneous melanomas, there has been fewer epidemiological, clinical and genetic evaluation of mucosal melanomas. Moreover, the lack of predictive models fully reproducing the pathogenesis and molecular alterations of mucosal melanoma makes its treatment challenging. Interestingly, dogs are frequently affected by melanomas of the oral cavity that are characterized, as their human counterparts, by focal infiltration, recurrence, and metastasis to regional lymph nodes, lungs and other organs. In dogs, some particular breeds are at high risk, suggesting a specific genetic background and strong genetic drivers. Altogether, the striking homologies in clinical presentation, histopathological features, and overall biology between human and canine mucosal melanomas make dogs invaluable natural models with which to investigate tumor development, including tumor ætiology, and develop tailored treatments. METHODS: We developed and characterized two canine oral melanoma cell lines from tumors isolated from dog patients with distinct clinical profiles; with and without lung metastases. The cells were characterized using immunohistochemistry, pharmacology and genetic studies. RESULTS: We have developed and immunohistochemically, genetically, and pharmacologically characterized. Two cell lines (Ocr_OCMM1X & Ocr_OCMM2X) were produced through mouse xenografts originating from two clinically contrasting melanomas of the oral cavity. Their exhaustive characterization showed two distinct biological and genetic profiles that are potentially linked to the stage of malignancy at the time of diagnosis and sample collection of each melanoma case. These cell lines thus constitute relevant tools with which to perform genetic and drug screening analyses for a better understanding of mucosal melanomas in dogs and humans. CONCLUSIONS: The aim of this study was to establish and characterize xenograft-derived canine melanoma cell lines with different morphologies, genetic features and pharmacological sensitivities that constitute good predictive models for comparative oncology. These cell lines are relevant tools to advance the use of canine mucosal melanomas as natural models for the benefit of both veterinary and human medicine.


Assuntos
Melanoma/diagnóstico por imagem , Melanoma/genética , Neoplasias Bucais/diagnóstico por imagem , Neoplasias Bucais/genética , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cães , Relação Dose-Resposta a Droga , Feminino , Humanos , Melanoma/tratamento farmacológico , Camundongos , Camundongos Nus , Neoplasias Bucais/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Melanoma Maligno Cutâneo
8.
Diab Vasc Dis Res ; 14(6): 516-524, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28868898

RESUMO

The genomic CDKN2A/B locus, encoding p16INK4a among others, is linked to an increased risk for cardiovascular disease and type 2 diabetes. Obesity is a risk factor for both cardiovascular disease and type 2 diabetes. p16INK4a is a cell cycle regulator and tumour suppressor. Whether it plays a role in adipose tissue formation is unknown. p16INK4a knock-down in 3T3/L1 preadipocytes or p16INK4a deficiency in mouse embryonic fibroblasts enhanced adipogenesis, suggesting a role for p16INK4a in adipose tissue formation. p16INK4a-deficient mice developed more epicardial adipose tissue in response to the adipogenic peroxisome proliferator activated receptor gamma agonist rosiglitazone. Additionally, adipose tissue around the aorta from p16INK4a-deficient mice displayed enhanced rosiglitazone-induced gene expression of adipogenic markers and stem cell antigen, a marker of bone marrow-derived precursor cells. Mice transplanted with p16INK4a-deficient bone marrow had more epicardial adipose tissue compared to controls when fed a high-fat diet. In humans, p16INK4a gene expression was enriched in epicardial adipose tissue compared to other adipose tissue depots. Moreover, epicardial adipose tissue from obese humans displayed increased expression of stem cell antigen compared to lean controls, supporting a bone marrow origin of epicardial adipose tissue. These results show that p16INK4a modulates epicardial adipose tissue development, providing a potential mechanistic link between the genetic association of the CDKN2A/B locus and cardiovascular disease risk.


Assuntos
Adipócitos/metabolismo , Adipogenia , Tecido Adiposo/metabolismo , Medula Óssea/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p18/metabolismo , Obesidade/metabolismo , Células-Tronco/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/patologia , Adipogenia/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/patologia , Adiposidade , Adulto , Idoso , Animais , Transplante de Medula Óssea , Estudos de Casos e Controles , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Inibidor p16 de Quinase Dependente de Ciclina/genética , Modelos Animais de Doenças , Feminino , Genótipo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/patologia , Obesidade/fisiopatologia , PPAR gama/agonistas , PPAR gama/metabolismo , Fenótipo , Interferência de RNA , Receptores de LDL/genética , Receptores de LDL/metabolismo , Rosiglitazona , Transdução de Sinais , Células-Tronco/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Transfecção
9.
PLoS One ; 12(5): e0177486, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28505195

RESUMO

Comparative oncology has shown that naturally occurring canine cancers are of valuable and translatable interest for the understanding of human cancer biology and the characterization of new therapies. This work was part of a comparative oncology project assessing a new, clinical-stage topoisomerase II inhibitor and comparing it with etoposide in dogs with spontaneous lymphoma with the objective to translate findings from dogs to humans. Etoposide is a topoisomerase II inhibitor widely used in various humans' solid and hematopoietic cancer, but little data is available concerning its potential antitumor efficacy in dogs. Etoposide phosphate is a water-soluble prodrug of etoposide which is expected to be better tolerated in dogs. The objectives of this study were to assess the safety, the tolerability and the efficacy of intravenous etoposide phosphate in dogs with multicentric lymphoma. Seven dose levels were evaluated in a traditional 3+3 phase I design. Twenty-seven owned-dogs with high-grade multicentric lymphoma were enrolled and treated with three cycles of etoposide phosphate IV injections every 2 weeks. Adverse effects were graded according to the Veterinary Cooperative Oncology Group criteria. A complete end-staging was realized 45 days after inclusion. The maximal tolerated dose was 300 mg/m2. At this dose level, the overall response rate was 83.3% (n = 6, 3 PR and 2 CR). Only a moderate reversible gastrointestinal toxicity, no severe myelotoxicity and no hypersensitivity reaction were reported at this dose level. Beyond the characterization of etoposide clinical efficacy in dogs, this study underlined the clinical and therapeutic homologies between dog and human lymphomas.


Assuntos
Antineoplásicos/administração & dosagem , Doenças do Cão/tratamento farmacológico , Doenças do Cão/patologia , Etoposídeo/análogos & derivados , Linfoma/veterinária , Compostos Organofosforados/administração & dosagem , Administração Intravenosa , Animais , Antineoplásicos/efeitos adversos , Doenças do Cão/epidemiologia , Cães , Etoposídeo/administração & dosagem , Etoposídeo/efeitos adversos , Gradação de Tumores , Estadiamento de Neoplasias , Compostos Organofosforados/efeitos adversos , Resultado do Tratamento , Carga Tumoral
10.
J Allergy Clin Immunol ; 138(5): 1309-1318.e11, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27177781

RESUMO

BACKGROUND: Epidemiologic and clinical observations identify obesity as an important risk factor for asthma exacerbation, but the underlying mechanisms remain poorly understood. Type 2 innate lymphoid cells (ILC2s) and type 3 innate lymphoid cells (ILC3s) have been implicated, respectively, in asthma and adipose tissue homeostasis and in obesity-associated airway hyperresponsiveness (AHR). OBJECTIVE: We sought to determine the potential involvement of innate lymphoid cells (ILCs) in allergic airway disease exacerbation caused by high-fat diet (HFD)-induced obesity. METHODS: Obesity was induced by means of HFD feeding, and allergic airway inflammation was subsequently induced by means of intranasal administration of house dust mite (HDM) extract. AHR, lung and visceral adipose tissue inflammation, humoral response, cytokines, and innate and adaptive lymphoid populations were analyzed in the presence or absence of ILCs. RESULTS: HFD feeding exacerbated allergic airway disease features, including humoral response, airway and tissue eosinophilia, AHR, and TH2 and TH17 pulmonary profiles. Notably, nonsensitized obese mice already exhibited increased lung ILC counts and tissue eosinophil infiltration compared with values in lean mice in the absence of AHR. The numbers of total and cytokine-expressing lung ILC2s and ILC3s further increased in HDM-challenged obese mice compared with those in HDM-challenged lean mice, and this was accompanied by high IL-33 and IL-1ß levels and decreased ILC markers in visceral adipose tissue. Furthermore, depletion of ILCs with an anti-CD90 antibody, followed by T-cell reconstitution, led to a profound decrease in allergic airway inflammatory features in obese mice, including TH2 and TH17 infiltration. CONCLUSION: These results indicate that HFD-induced obesity might exacerbate allergic airway inflammation through mechanisms involving ILC2s and ILC3s.


Assuntos
Asma/imunologia , Linfócitos/imunologia , Obesidade/imunologia , Animais , Antígenos de Dermatophagoides/imunologia , Asma/sangue , Asma/fisiopatologia , Citocinas/imunologia , Dieta Hiperlipídica , Imunidade Inata , Imunoglobulina E/sangue , Pulmão/imunologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/sangue , Obesidade/fisiopatologia , Baço/citologia
11.
Clin Cancer Res ; 21(23): 5314-23, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26169968

RESUMO

PURPOSE: F14512 is a new topoisomerase II inhibitor containing a spermine moiety that facilitates selective uptake by tumor cells and increases topoisomerase II poisoning. F14512 is currently in a phase I/II clinical trial in patients with acute myeloid leukemia. The aim of this study was to investigate F14512 potential in a new clinical indication. Because of the many similarities between human and dog lymphomas, we sought to determine the tolerance, efficacy, pharmacokinetic/pharmacodynamic (PK/PD) relationship of F14512 in this indication, and potential biomarkers that could be translated into human trials. EXPERIMENTAL DESIGN: Twenty-three dogs with stage III-IV naturally occurring lymphomas were enrolled in the phase I dose-escalation trial, which consisted of three cycles of F14512 i.v. injections. Endpoints included safety and therapeutic efficacy. Serial blood samples and tumor biopsies were obtained for PK/PD and biomarker studies. RESULTS: Five dose levels were evaluated to determine the recommended dose. F14512 was well tolerated, with the expected dose-dependent hematologic toxicity. F14512 induced an early decrease of tumoral lymph node cells, and a high response rate of 91% (21/23) with 10 complete responses, 11 partial responses, 1 stable disease, and 1 progressive disease. Phosphorylation of histone H2AX was studied as a potential PD biomarker of F14512. CONCLUSIONS: This trial demonstrated that F14512 can be safely administered to dogs with lymphoma resulting in strong therapeutic efficacy. Additional evaluation of F14512 is needed to compare its efficacy with standards of care in dogs, and to translate biomarker and efficacy findings into clinical trials in humans.


Assuntos
Antineoplásicos/farmacologia , Doenças do Cão/tratamento farmacológico , Linfoma/veterinária , Podofilotoxina/análogos & derivados , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Biomarcadores , Linhagem Celular Tumoral , Doenças do Cão/metabolismo , Doenças do Cão/patologia , Cães , Avaliação Pré-Clínica de Medicamentos , Feminino , Histonas/metabolismo , Humanos , Masculino , Estadiamento de Neoplasias , Podofilotoxina/efeitos adversos , Podofilotoxina/farmacocinética , Podofilotoxina/farmacologia , Inibidores da Topoisomerase II/efeitos adversos , Inibidores da Topoisomerase II/farmacocinética , Inibidores da Topoisomerase II/farmacologia , Resultado do Tratamento
12.
J Allergy Clin Immunol ; 135(6): 1625-35.e5, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25556996

RESUMO

BACKGROUND: Remodeling of quiescent vessels with increases in permeability, vasodilatation, and edema are hallmarks of inflammatory disorders. Factors involved in this type of remodeling represent potential therapeutic targets. OBJECTIVES: We investigated whether the nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR) ß/δ, a regulator of metabolism, fibrosis, and skin homeostasis, is involved in regulation of this type of remodeling. METHODS: Wild-type and various Pparb/d mutant mice were used to monitor dermal acute vascular hyperpermeability (AVH) and passive systemic anaphylaxis-induced hypothermia and edema. PPARß/δ-dependent kinase activation and remodeling of endothelial cell-cell junctions were addressed by using human endothelial cells. RESULTS: AVH and dilatation of dermal microvessels stimulated by vascular endothelial growth factor A, histamine, and thrombin are severely compromised in PPARß/δ-deficient mice. Selective deletion of the Pparb/d-encoding gene in endothelial cells in vivo similarly limits dermal AVH and vasodilatation, providing evidence that endothelial PPARß/δ is the major player in regulating acute dermal microvessel remodeling. Furthermore, endothelial PPARß/δ regulatory functions are not restricted to the skin vasculature because its deletion in the endothelium, but not in smooth muscle cells, also leads to reduced systemic anaphylaxis, the most severe form of allergic reaction, in which an acute vascular response plays a key role. PPARß/δ-dependent AVH activation likely involves the activation of mitogen-activated protein kinase and Akt pathways and leads to downstream destabilization of endothelial cell-cell junctions. CONCLUSION: These results unveil not only a novel function of PPARß/δ as a direct regulator of acute vessel permeability and dilatation but also provide evidence that antagonizing PPARß/δ represents an important strategy to consider for moderating diseases with altered endothelial integrity, such as acute inflammatory and allergic disorders.


Assuntos
Anafilaxia/imunologia , Permeabilidade Capilar/imunologia , Células Endoteliais/imunologia , PPAR delta/imunologia , PPAR beta/imunologia , Pele/imunologia , Anafilaxia/genética , Anafilaxia/patologia , Animais , Permeabilidade Capilar/efeitos dos fármacos , Edema/genética , Edema/imunologia , Edema/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Feminino , Regulação da Expressão Gênica , Histamina/farmacologia , Hipotermia/genética , Hipotermia/imunologia , Hipotermia/patologia , Junções Intercelulares/efeitos dos fármacos , Junções Intercelulares/imunologia , Junções Intercelulares/patologia , Camundongos , Camundongos Transgênicos , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/imunologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/patologia , PPAR delta/deficiência , PPAR delta/genética , PPAR beta/deficiência , PPAR beta/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Transdução de Sinais , Pele/irrigação sanguínea , Pele/efeitos dos fármacos , Pele/patologia , Trombina/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia
13.
J Exp Med ; 211(6): 1185-96, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24821910

RESUMO

Atopic dermatitis (AD) is a chronic allergic dermatosis characterized by epidermal thickening and dermal inflammatory infiltrates with a dominant Th2 profile during the acute phase, whereas a Th1 profile is characteristic of the chronic stage. Among chemokines and chemokine receptors associated with inflammation, increased levels of CX3CL1 (fractalkine) and its unique receptor, CX3CR1, have been observed in human AD. We have thus investigated their role and mechanism of action in experimental models of AD and psoriasis. AD pathology and immune responses, but not psoriasis, were profoundly decreased in CX3CR1-deficient mice and upon blocking CX3CL1-CX3CR1 interactions in wild-type mice. CX3CR1 deficiency affected neither antigen presentation nor T cell proliferation in vivo upon skin sensitization, but CX3CR1 expression by both Th2 and Th1 cells was required to induce AD. Surprisingly, unlike in allergic asthma, where CX3CL1 and CX3CR1 regulate the pathology by controlling effector CD4(+) T cell survival within inflamed tissues, adoptive transfer experiments established CX3CR1 as a key regulator of CD4(+) T cell retention in inflamed skin, indicating a new function for this chemokine receptor. Therefore, although CX3CR1 and CX3CL1 act through distinct mechanisms in different pathologies, our results further indicate their interest as promising therapeutic targets in allergic diseases.


Assuntos
Quimiocina CX3CL1/imunologia , Dermatite Atópica/imunologia , Receptores de Quimiocinas/imunologia , Pele/imunologia , Linfócitos T/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Receptor 1 de Quimiocina CX3C , Proliferação de Células , Células Cultivadas , Quimiocina CX3CL1/antagonistas & inibidores , Quimiocina CX3CL1/genética , Dermatite Atópica/genética , Citometria de Fluxo , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Oligonucleotídeos/genética , Oligonucleotídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/imunologia , Receptores de Quimiocinas/genética , Pele/metabolismo , Pele/patologia , Linfócitos T/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Células Th2/imunologia , Células Th2/metabolismo
14.
Diabetes ; 63(10): 3199-209, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24789920

RESUMO

Type 2 diabetes (T2D) is hallmarked by insulin resistance, impaired insulin secretion, and increased hepatic glucose production. The worldwide increasing prevalence of T2D calls for efforts to understand its pathogenesis in order to improve disease prevention and management. Recent genome-wide association studies have revealed strong associations between the CDKN2A/B locus and T2D risk. The CDKN2A/B locus contains genes encoding cell cycle inhibitors, including p16(Ink4a), which have not yet been implicated in the control of hepatic glucose homeostasis. Here, we show that p16(Ink4a) deficiency enhances fasting-induced hepatic glucose production in vivo by increasing the expression of key gluconeogenic genes. p16(Ink4a) downregulation leads to an activation of PKA-CREB-PGC1α signaling through increased phosphorylation of PKA regulatory subunits. Taken together, these results provide evidence that p16(Ink4a) controls fasting glucose homeostasis and could as such be involved in T2D development.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , Jejum/metabolismo , Gluconeogênese/fisiologia , Fígado/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Camundongos , Camundongos Knockout , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fatores de Transcrição/metabolismo
15.
J Clin Endocrinol Metab ; 99(8): 2821-33, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24758184

RESUMO

CONTEXT: Obesity is characterized by the excessive accumulation of dysfunctional white adipose tissue (WAT), leading to a strong perturbation of metabolic regulations. However, the molecular events underlying this process are not fully understood. OBJECTIVE: MicroRNAs (miRNAs) are small noncoding RNAs acting as posttranscriptional regulators of gene expression in multiple tissues and organs. However, their expression and roles in WAT cell subtypes, which include not only adipocytes but also immune, endothelial, and mesenchymal stem cells as well as preadipocytes, have not been characterized. Design/Results: By applying differential miRNome analysis, we demonstrate that the expression of several miRNAs is dysregulated in epididymal WAT from ob/ob and high-fat diet-fed mice. Adipose tissue-specific down-regulation of miR-200a and miR-200b and the up-regulation of miR-342-3p, miR-335-5p, and miR-335-3p were observed. Importantly, a similarly altered expression of miR-200a and miR-200b was observed in obese diabetic patients. Furthermore, cell fractionation of mouse adipose tissue revealed that miRNAs are differentially expressed in adipocytes and in subpopulations from the stromal vascular fraction. Finally, integration of transcriptomic data showed that bioinformatically predicted miRNA target genes rarely showed anticorrelated expression with that of targeting miRNA, in contrast to experimentally validated target genes. CONCLUSION: Taken together, our data indicate that the dysregulated expression of miRNAs occurs in distinct cell types and is likely to affect cell-specific function(s) of obese WAT.


Assuntos
Tecido Adiposo Branco/metabolismo , MicroRNAs/genética , Obesidade/genética , Tecido Adiposo Branco/patologia , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Análise em Microsséries , Obesidade/metabolismo , Especificidade de Órgãos/genética
16.
PLoS One ; 9(4): e92684, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24710396

RESUMO

The "mechanistic target of rapamycin" (mTOR) is a central controller of growth, proliferation and/or motility of various cell-types ranging from adipocytes to immune cells, thereby linking metabolism and immunity. mTOR signaling is overactivated in obesity, promoting inflammation and insulin resistance. Therefore, great interest exists in the development of mTOR inhibitors as therapeutic drugs for obesity or diabetes. However, despite a plethora of studies characterizing the metabolic consequences of mTOR inhibition in rodent models, its impact on immune changes associated with the obese condition has never been questioned so far. To address this, we used a mouse model of high-fat diet (HFD)-fed mice with and without pharmacologic mTOR inhibition by rapamycin. Rapamycin was weekly administrated to HFD-fed C57BL/6 mice for 22 weeks. Metabolic effects were determined by glucose and insulin tolerance tests and by indirect calorimetry measures of energy expenditure. Inflammatory response and immune cell populations were characterized in blood, adipose tissue and liver. In parallel, the activities of both mTOR complexes (e. g. mTORC1 and mTORC2) were determined in adipose tissue, muscle and liver. We show that rapamycin-treated mice are leaner, have enhanced energy expenditure and are protected against insulin resistance. These beneficial metabolic effects of rapamycin were associated to significant changes of the inflammatory profiles of both adipose tissue and liver. Importantly, immune cells with regulatory functions such as regulatory T-cells (Tregs) and myeloid-derived suppressor cells (MDSCs) were increased in adipose tissue. These rapamycin-triggered metabolic and immune effects resulted from mTORC1 inhibition whilst mTORC2 activity was intact. Taken together, our results reinforce the notion that controlling immune regulatory cells in metabolic tissues is crucial to maintain a proper metabolic status and, more generally, comfort the need to search for novel pharmacological inhibitors of the mTOR signaling pathway to prevent and/or treat metabolic diseases.


Assuntos
Gorduras na Dieta/efeitos adversos , Imunossupressores/farmacologia , Células Mieloides/imunologia , Obesidade/imunologia , Sirolimo/farmacologia , Linfócitos T Reguladores/imunologia , Tecido Adiposo/imunologia , Tecido Adiposo/patologia , Animais , Proliferação de Células/efeitos dos fármacos , Gorduras na Dieta/farmacologia , Modelos Animais de Doenças , Feminino , Resistência à Insulina/imunologia , Fígado/imunologia , Fígado/patologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Complexos Multiproteicos/imunologia , Células Mieloides/patologia , Obesidade/induzido quimicamente , Obesidade/patologia , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Reguladores/patologia , Serina-Treonina Quinases TOR/imunologia
17.
J Clin Invest ; 124(3): 1037-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24531544

RESUMO

The nuclear bile acid receptor farnesoid X receptor (FXR) is an important transcriptional regulator of bile acid, lipid, and glucose metabolism. FXR is highly expressed in the liver and intestine and controls the synthesis and enterohepatic circulation of bile acids. However, little is known about FXR-associated proteins that contribute to metabolic regulation. Here, we performed a mass spectrometry-based search for FXR-interacting proteins in human hepatoma cells and identified AMPK as a coregulator of FXR. FXR interacted with the nutrient-sensitive kinase AMPK in the cytoplasm of target cells and was phosphorylated in its hinge domain. In cultured human and murine hepatocytes and enterocytes, pharmacological activation of AMPK inhibited FXR transcriptional activity and prevented FXR coactivator recruitment to promoters of FXR-regulated genes. Furthermore, treatment with AMPK activators, including the antidiabetic biguanide metformin, inhibited FXR agonist induction of FXR target genes in mouse liver and intestine. In a mouse model of intrahepatic cholestasis, metformin treatment induced FXR phosphorylation, perturbed bile acid homeostasis, and worsened liver injury. Together, our data indicate that AMPK directly phosphorylates and regulates FXR transcriptional activity to precipitate liver injury under conditions favoring cholestasis.


Assuntos
Adenilato Quinase/metabolismo , Ácidos e Sais Biliares/biossíntese , Homeostase , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Adenilato Quinase/antagonistas & inibidores , Sequência de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Transporte Biológico , Células CACO-2 , Colestase Intra-Hepática/metabolismo , Colestase Intra-Hepática/patologia , Células Hep G2 , Humanos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Processamento de Proteína Pós-Traducional , Receptores Citoplasmáticos e Nucleares/química , Ribonucleotídeos/farmacologia , Transdução de Sinais , Transativadores/metabolismo , Transcrição Gênica , Ativação Transcricional/efeitos dos fármacos
18.
Hepatology ; 59(5): 2022-33, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24037988

RESUMO

UNLABELLED: Bile acid metabolism is intimately linked to the control of energy homeostasis and glucose and lipid metabolism. The nuclear receptor farnesoid X receptor (FXR) plays a major role in the enterohepatic cycling of bile acids, but the impact of nutrients on bile acid homeostasis is poorly characterized. Metabolically active hepatocytes cope with increases in intracellular glucose concentrations by directing glucose into storage (glycogen) or oxidation (glycolysis) pathways, as well as to the pentose phosphate shunt and the hexosamine biosynthetic pathway. Here we studied whether the glucose nonoxidative hexosamine biosynthetic pathway modulates FXR activity. Our results show that FXR interacts with and is O-GlcNAcylated by O-GlcNAc transferase in its N-terminal AF1 domain. Increased FXR O-GlcNAcylation enhances FXR gene expression and protein stability in a cell type-specific manner. High glucose concentrations increased FXR O-GlcNAcylation, hence its protein stability and transcriptional activity by inactivating corepressor complexes, which associate in a ligand-dependent manner with FXR, and increased FXR binding to chromatin. Finally, in vivo fasting-refeeding experiments show that FXR undergoes O-GlcNAcylation in fed conditions associated with increased direct FXR target gene expression and decreased liver bile acid content. CONCLUSION: FXR activity is regulated by glucose fluxes in hepatocytes through a direct posttranslational modification catalyzed by the glucose-sensing hexosamine biosynthetic pathway.


Assuntos
Ácidos e Sais Biliares/metabolismo , Glucose/metabolismo , N-Acetilglucosaminiltransferases/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Acilação , Animais , Regulação da Expressão Gênica , Células Hep G2 , Hepatócitos/metabolismo , Hexosaminas/biossíntese , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Via de Pentose Fosfato , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais
20.
PLoS One ; 7(3): e32440, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22403661

RESUMO

OBJECTIVE: A genomic region near the CDKN2A locus, encoding p16(INK4a), has been associated to type 2 diabetes and atherosclerotic vascular disease, conditions in which inflammation plays an important role. Recently, we found that deficiency of p16(INK4a) results in decreased inflammatory signaling in murine macrophages and that p16(INK4a) influences the phenotype of human adipose tissue macrophages. Therefore, we investigated the influence of immune cell p16(INK4a) on glucose tolerance and atherosclerosis in mice. METHODS AND RESULTS: Bone marrow p16(INK4a)-deficiency in C57Bl6 mice did not influence high fat diet-induced obesity nor plasma glucose and lipid levels. Glucose tolerance tests showed no alterations in high fat diet-induced glucose intolerance. While bone marrow p16(INK4a)-deficiency did not affect the gene expression profile of adipose tissue, hepatic expression of the alternative markers Chi3l3, Mgl2 and IL10 was increased and the induction of pro-inflammatory Nos2 was restrained on the high fat diet. Bone marrow p16(INK4a)-deficiency in low density lipoprotein receptor-deficient mice did not affect western diet-induced atherosclerotic plaque size or morphology. In line, plasma lipid levels remained unaffected and p16(INK4a)-deficient macrophages displayed equal cholesterol uptake and efflux compared to wild type macrophages. CONCLUSION: Bone marrow p16(INK4a)-deficiency does not affect plasma lipids, obesity, glucose tolerance or atherosclerosis in mice.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/patologia , Medula Óssea/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Glucose/metabolismo , Homeostase , Obesidade/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/induzido quimicamente , Intolerância à Glucose/metabolismo , Humanos , Hiperlipidemias/metabolismo , Hiperlipidemias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/induzido quimicamente , Receptores de LDL/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...