Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 839929, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281020

RESUMO

The NLRP3 inflammasome is overexpressed in gingiva of periodontitis patients but its role remains unclear. In our study, we use a periodontitis mouse model of ligature, impregnated or not with Porphyromonas gingivalis, in WT or NLRP3 KO mice. After 28 days of induction, ligature alone provoked exacerbated periodontal destruction in KO mice, compared to WT mice, with an increase in activated osteoclasts. No difference was observed at 14 days, suggesting that NLRP3 is involved in regulatory pathways that limit periodontitis. In contrast, in the presence of P. gingivalis, this protective effect of NLRP3 was not observed. Overexpression of NLRP3 in connective tissue of WT mice increased the local production of mature IL-1ß, together with a dramatic mobilization of neutrophils, bipartitely distributed between the site of periodontitis induction and the alveolar bone crest. P. gingivalis enhanced the targeting of NLRP3-positive neutrophils to the alveolar bone crest, suggesting a role for this subpopulation in bone loss. Conversely, in NLRP3 KO mice, mature IL-1ß expression was lower and almost no neutrophils were mobilized. Our study sheds new light on the role of NLRP3 in periodontitis by highlighting the ambiguous role of neutrophils, and P. gingivalis which affects NLRP3 functions.


Assuntos
Perda do Osso Alveolar , Periodontite , Perda do Osso Alveolar/metabolismo , Animais , Humanos , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neutrófilos/metabolismo , Periodontite/metabolismo , Porphyromonas gingivalis/metabolismo
2.
J Clin Med ; 10(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669185

RESUMO

The outbreak of Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has significantly affected the dental care sector. Dental professionals are at high risk of being infected, and therefore transmitting SARS-CoV-2, due to the nature of their profession, with close proximity to the patient's oropharyngeal and nasal regions and the use of aerosol-generating procedures. The aim of this article is to provide an update on different issues regarding SARS-CoV-2 and COVID-19 that may be relevant for dentists. Members of the French National College of Oral Biology Lecturers ("Collège National des EnseignantS en Biologie Orale"; CNESBO-COVID19 Task Force) answered seventy-two questions related to various topics, including epidemiology, virology, immunology, diagnosis and testing, SARS-CoV-2 transmission and oral cavity, COVID-19 clinical presentation, current treatment options, vaccine strategies, as well as infection prevention and control in dental practice. The questions were selected based on their relevance for dental practitioners. Authors independently extracted and gathered scientific data related to COVID-19, SARS-CoV-2 and the specific topics using scientific databases. With this review, the dental practitioners will have a general overview of the COVID-19 pandemic and its impact on their practice.

3.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348900

RESUMO

Cell-cell fusion between eukaryotic cells is a general process involved in many physiological and pathological conditions, including infections by bacteria, parasites, and viruses. As obligate intracellular pathogens, viruses use intracellular machineries and pathways for efficient replication in their host target cells. Interestingly, certain viruses, and, more especially, enveloped viruses belonging to different viral families and including human pathogens, can mediate cell-cell fusion between infected cells and neighboring non-infected cells. Depending of the cellular environment and tissue organization, this virus-mediated cell-cell fusion leads to the merge of membrane and cytoplasm contents and formation of multinucleated cells, also called syncytia, that can express high amount of viral antigens in tissues and organs of infected hosts. This ability of some viruses to trigger cell-cell fusion between infected cells as virus-donor cells and surrounding non-infected target cells is mainly related to virus-encoded fusion proteins, known as viral fusogens displaying high fusogenic properties, and expressed at the cell surface of the virus-donor cells. Virus-induced cell-cell fusion is then mediated by interactions of these viral fusion proteins with surface molecules or receptors involved in virus entry and expressed on neighboring non-infected cells. Thus, the goal of this review is to give an overview of the different animal virus families, with a more special focus on human pathogens, that can trigger cell-cell fusion.


Assuntos
Fusão Celular , Membrana Celular/metabolismo , Fusão de Membrana , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus , Vírus/metabolismo , Animais , Humanos , Vírus/isolamento & purificação
4.
mBio ; 10(6)2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31744918

RESUMO

Dendritic cells (DCs) and macrophages as well as osteoclasts (OCs) are emerging as target cells of HIV-1 involved in virus transmission, dissemination, and establishment of persistent tissue virus reservoirs. While these myeloid cells are poorly infected by cell-free viruses because of the high expression levels of cellular restriction factors such as SAMHD1, we show here that HIV-1 uses a specific and common cell-to-cell fusion mechanism for virus transfer and dissemination from infected T lymphocytes to the target cells of the myeloid lineage, including immature DCs (iDCs), OCs, and macrophages, but not monocytes and mature DCs. The establishment of contacts with infected T cells leads to heterotypic cell fusion for the fast and massive transfer of viral material into OC and iDC targets, which subsequently triggers homotypic fusion with noninfected neighboring OCs and iDCs for virus dissemination. These two cell-to-cell fusion processes are not restricted by SAMHD1 and allow very efficient spreading of virus in myeloid cells, resulting in the formation of highly virus-productive multinucleated giant cells. These results reveal the cellular mechanism for SAMHD1-independent cell-to-cell spreading of HIV-1 in myeloid cell targets through the formation of the infected multinucleated giant cells observed in vivo in lymphoid and nonlymphoid tissues of HIV-1-infected patients.IMPORTANCE We demonstrate that HIV-1 uses a common two-step cell-to-cell fusion mechanism for massive virus transfer from infected T lymphocytes and dissemination to myeloid target cells, including dendritic cells and macrophages as well as osteoclasts. This cell-to-cell infection process bypasses the restriction imposed by the SAMHD1 host cell restriction factor for HIV-1 replication, leading to the formation of highly virus-productive multinucleated giant cells as observed in vivo in lymphoid and nonlymphoid tissues of HIV-1-infected patients. Since myeloid cells are emerging as important target cells of HIV-1, these results contribute to a better understanding of the role of these myeloid cells in pathogenesis, including cell-associated virus sexual transmission, cell-to-cell virus spreading, and establishment of long-lived viral tissue reservoirs.


Assuntos
Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Tropismo Viral , Replicação Viral , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Humanos , Macrófagos/metabolismo , Macrófagos/virologia , Células Mieloides/metabolismo , Células Mieloides/virologia
5.
J Immunol ; 201(9): 2624-2640, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30282749

RESUMO

Endosomal traffic of TCR and signaling molecules regulates immunological synapse formation and T cell activation. We recently showed that Rab11 endosomes regulate the subcellular localization of the tyrosine kinase Lck and of the GTPase Rac1 and control their functions in TCR signaling and actin cytoskeleton remodeling. HIV-1 infection of T cells alters their endosomal traffic, activation capacity, and actin cytoskeleton organization. The viral protein Nef is pivotal for these modifications. We hypothesized that HIV-1 Nef could jointly alter Lck and Rac1 endosomal traffic and concomitantly modulate their functions. In this study, we show that HIV-1 infection of human T cells sequesters both Lck and Rac1 in a pericentrosomal compartment in an Nef-dependent manner. Strikingly, the Nef-induced Lck compartment contains signaling-competent forms (phosphorylated on key Tyr residues) of Lck and some of its downstream effectors, TCRζ, ZAP70, SLP76, and Vav1, avoiding the proximal LAT adaptor. Importantly, Nef-induced concentration of signaling molecules was concomitant with the upregulation of several early and late T cell activation genes. Moreover, preventing the concentration of the Nef-induced Lck compartment by depleting the Rab11 effector FIP3 counteracted Nef-induced gene expression upregulation. In addition, Nef extensively sequesters Rac1 and downregulates Rac1-dependent actin cytoskeleton remodeling, thus reducing T cell spreading. Therefore, by modifying their endosomal traffic, Nef hijacks signaling and actin cytoskeleton regulators to dually modulate their functional outputs. Our data shed new light into the molecular mechanisms that modify T cell physiology during HIV-1 infection.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/imunologia , Citoesqueleto de Actina/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Endossomos/imunologia , Endossomos/metabolismo , Endossomos/virologia , Infecções por HIV/metabolismo , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/imunologia , Transporte Proteico/imunologia , Transdução de Sinais/imunologia , Proteínas rac1 de Ligação ao GTP/imunologia
6.
Front Immunol ; 9: 260, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515578

RESUMO

While HIV-1 infection of target cells with cell-free viral particles has been largely documented, intercellular transmission through direct cell-to-cell contact may be a predominant mode of propagation in host. To spread, HIV-1 infects cells of the immune system and takes advantage of their specific particularities and functions. Subversion of intercellular communication allows to improve HIV-1 replication through a multiplicity of intercellular structures and membrane protrusions, like tunneling nanotubes, filopodia, or lamellipodia-like structures involved in the formation of the virological synapse. Other features of immune cells, like the immunological synapse or the phagocytosis of infected cells are hijacked by HIV-1 and used as gateways to infect target cells. Finally, HIV-1 reuses its fusogenic capacity to provoke fusion between infected donor cells and target cells, and to form infected syncytia with high capacity of viral production and improved capacities of motility or survival. All these modes of cell-to-cell transfer are now considered as viral mechanisms to escape immune system and antiretroviral therapies, and could be involved in the establishment of persistent virus reservoirs in different host tissues.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Sinapses Imunológicas/virologia , Junções Intercelulares/virologia , Animais , Linfócitos T CD4-Positivos/virologia , Reservatórios de Doenças , Infecções por HIV/transmissão , Humanos , Evasão da Resposta Imune , Fusão de Membrana , Nanotubos/virologia , Pseudópodes/virologia
7.
Small GTPases ; 9(4): 310-315, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27533792

RESUMO

Several families of small GTPases regulate a variety of fundamental cellular processes, encompassing growth factor signal transduction, vesicular trafficking and control of the cytoskeleton. Frequently, their action is hierarchical and complementary, but much of the detail of their functional interactions remains to be clarified. It is well established that Rab family members regulate a variety of intracellular vesicle trafficking pathways. Moreover, Rho family GTPases are pivotal for the control of the actin and microtubule cytoskeleton. However, the interplay between these 2 types of GTPases has been rarely reported. We discuss here our recent findings showing that Rab11, a key regulator of endosomal recycling, and Rac1, a central actin cytoskeleton regulator involved in lamellipodium formation and cell migration, interplay on endosomes through the Rab11 effector FIP3. In the context of the rapidly reactive T lymphocytes, Rab11-Rac1 endosomal functional interplay is important to control cell shape changes and cell symmetry during lymphocyte spreading and immunological synapse formation and ultimately modulate T cell activation.


Assuntos
Forma Celular , Endossomos/metabolismo , Quinase I-kappa B/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Humanos
8.
Cell Rep ; 21(1): 181-194, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28978472

RESUMO

Adenomatous polyposis coli (APC) is a polarity regulator and tumor suppressor associated with familial adenomatous polyposis and colorectal cancer development. Although extensively studied in epithelial transformation, the effect of APC on T lymphocyte activation remains poorly defined. We found that APC ensures T cell receptor-triggered activation through Nuclear Factor of Activated T cells (NFAT), since APC is necessary for NFAT's nuclear localization in a microtubule-dependent fashion and for NFAT-driven transcription leading to cytokine gene expression. Interestingly, NFAT forms clusters juxtaposed with microtubules. Ultimately, mouse Apc deficiency reduces the presence of NFAT in the nucleus of intestinal regulatory T cells (Tregs) and impairs Treg differentiation and the acquisition of a suppressive phenotype, which is characterized by the production of the anti-inflammatory cytokine IL-10. These findings suggest a dual role for APC mutations in colorectal cancer development, where mutations drive the initiation of epithelial neoplasms and also reduce Treg-mediated suppression of the detrimental inflammation that enhances cancer growth.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/genética , Regulação Neoplásica da Expressão Gênica , Microtúbulos/imunologia , Fatores de Transcrição NFATC/genética , Linfócitos T Reguladores/imunologia , Polipose Adenomatosa do Colo/imunologia , Polipose Adenomatosa do Colo/patologia , Proteína da Polipose Adenomatosa do Colo/antagonistas & inibidores , Proteína da Polipose Adenomatosa do Colo/imunologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Células HCT116 , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Células Jurkat , Linfonodos/imunologia , Linfonodos/patologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microtúbulos/ultraestrutura , Fatores de Transcrição NFATC/imunologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/patologia
9.
J Virol ; 91(24)2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978713

RESUMO

HIV-1-infected macrophages participate in virus dissemination and establishment of virus reservoirs in host tissues, but the mechanisms for virus cell-to-cell transfer to macrophages remain unknown. Here, we reveal the mechanisms for cell-to-cell transfer from infected T cells to macrophages and virus spreading between macrophages. We show that contacts between infected T lymphocytes and macrophages lead to cell fusion for the fast and massive transfer of CCR5-tropic viruses to macrophages. Through the merge of viral material between T cells and macrophages, these newly formed lymphocyte-macrophage fused cells acquire the ability to fuse with neighboring noninfected macrophages. Together, these two-step envelope-dependent cell fusion processes lead to the formation of highly virus-productive multinucleated giant cells reminiscent of the infected multinucleated giant macrophages detected in HIV-1-infected patients and simian immunodeficiency virus-infected macaques. These mechanisms represent an original mode of virus transmission for viral spreading and a new model for the formation of macrophage virus reservoirs during infection.IMPORTANCE We reveal a very efficient mechanism involved in cell-to-cell transfer from infected T cells to macrophages and subsequent virus spreading between macrophages by a two-step cell fusion process. Infected T cells first establish contacts and fuse with macrophage targets. The newly formed lymphocyte-macrophage fused cells then acquire the ability to fuse with surrounding uninfected macrophages, leading to the formation of infected multinucleated giant cells that can survive for a long time, as evidenced in vivo in lymphoid organs and the central nervous system. This route of infection may be a major determinant for virus dissemination and the formation of macrophage virus reservoirs in host tissues during HIV-1 infection.


Assuntos
Linfócitos T CD4-Positivos/citologia , Células Gigantes/virologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Macrófagos/citologia , Animais , Linfócitos T CD4-Positivos/virologia , Fusão Celular , Linhagem Celular , Células Gigantes/citologia , Células HEK293 , HIV-1/patogenicidade , Humanos , Células Jurkat , Macaca mulatta , Macrófagos/virologia , Vírus da Imunodeficiência Símia/patogenicidade , Vírus da Imunodeficiência Símia/fisiologia
10.
Methods Mol Biol ; 1584: 129-142, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28255700

RESUMO

Immunological synapse formation is the result of a profound T cell polarization process that involves the coordinated action of the actin and microtubule cytoskeleton, as well as intracellular vesicle traffic. Endosomal vesicle traffic ensures the targeting of the T cell receptor (TCR) and various signaling molecules to the synapse, being necessary for the generation of signaling complexes downstream of the TCR. Here we describe the microscopy imaging methods that we currently use to unveil how TCR and signaling molecules are associated with endosomal compartments and deliver their cargo to the immunological synapse.


Assuntos
Vesículas Citoplasmáticas/imunologia , Endossomos/imunologia , Sinapses Imunológicas/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Animais , Transporte Biológico Ativo/imunologia , Humanos , Células Jurkat , Camundongos
11.
Methods Mol Biol ; 1584: 545-557, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28255725

RESUMO

T cells are the main cellular targets of the human immunodeficiency virus 1 (HIV-1). HIV-1 infection induces pleiotropic effects on the infected T cell that modify the T cell capacity to respond to antigen and facilitates virus replication. HIV-1 infection subverts the formation and function of the immunological synapse altering both actin cytoskeleton remodeling and intracellular vesicle traffic. We describe here our methods to unveil how HIV-1 and in particular its protein Nef modify vesicle traffic to the immunological synapse, perturbing the synapse activation capacity.


Assuntos
Antígenos HIV/imunologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Sinapses Imunológicas/imunologia , Replicação Viral/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Infecções por HIV/patologia , Humanos , Sinapses Imunológicas/patologia , Células Jurkat
12.
J Immunol ; 198(7): 2967-2978, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28235866

RESUMO

The role of endosomes in receptor signal transduction is a long-standing question, which remains largely unanswered. The T cell Ag receptor and various components of its proximal signaling machinery are associated with distinct endosomal compartments, but how endosomal traffic affects T cell signaling remains ill-defined. In this article, we demonstrate in human T cells that the subcellular localization and function of the protein tyrosine kinase Lck depends on the Rab11 effector FIP3 (Rab11 family interacting protein-3). FIP3 overexpression or silencing and its ability to interact with Rab11 modify Lck subcellular localization and its delivery to the immunological synapse. Importantly, FIP3-dependent Lck localization controls early TCR signaling events, such as tyrosine phosphorylation of TCRζ, ZAP70, and LAT and intracellular calcium concentration, as well as IL-2 gene expression. Interestingly, FIP3 controls both steady-state and poststimulation phosphotyrosine and calcium levels. Finally, our findings indicate that FIP3 modulates TCR-CD3 cell surface expression via the regulation of steady-state Lck-mediated TCRζ phosphorylation, which in turn controls TCRζ protein levels. This may influence long-term T cell activation in response to TCR-CD3 stimulation. Therefore, our data underscore the importance of finely regulated endosomal traffic in TCR signal transduction and T cell activation leading to IL-2 production.


Assuntos
Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Western Blotting , Endossomos/imunologia , Técnicas de Silenciamento de Genes , Humanos , Quinase I-kappa B/imunologia , Sinapses Imunológicas/imunologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/imunologia , Microscopia Confocal , Reação em Cadeia da Polimerase , Transporte Proteico/imunologia , Proteínas rab de Ligação ao GTP/imunologia
13.
EMBO J ; 35(11): 1160-74, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27154205

RESUMO

The immunological synapse generation and function is the result of a T-cell polarization process that depends on the orchestrated action of the actin and microtubule cytoskeleton and of intracellular vesicle traffic. However, how these events are coordinated is ill defined. Since Rab and Rho families of GTPases control intracellular vesicle traffic and cytoskeleton reorganization, respectively, we investigated their possible interplay. We show here that a significant fraction of Rac1 is associated with Rab11-positive recycling endosomes. Moreover, the Rab11 effector FIP3 controls Rac1 intracellular localization and Rac1 targeting to the immunological synapse. FIP3 regulates, in a Rac1-dependent manner, key morphological events, like T-cell spreading and synapse symmetry. Finally, Rab11-/FIP3-mediated regulation is necessary for T-cell activation leading to cytokine production. Therefore, Rac1 endosomal traffic is key to regulate T-cell activation.


Assuntos
Actinas/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Quinase I-kappa B/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Linhagem Celular , Células Cultivadas , Endossomos/metabolismo , Humanos , Quinase I-kappa B/genética , Sinapses Imunológicas/metabolismo , Interleucina-2/metabolismo , Células Jurkat , RNA Interferente Pequeno/genética
14.
PLoS One ; 11(1): e0145617, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26745724

RESUMO

Phospholipid Scramblase 1 (PLSCR1) was initially characterized as a type II transmembrane protein involved in bilayer movements of phospholipids across the plasma membrane leading to the cell surface exposure of phosphatidylserine, but other cellular functions have been ascribed to this protein in signaling processes and in the nucleus. In the present study, expression and functions of PLSCR1 were explored in specialized phagocytic cells of the monocyte/macrophage lineage. The expression of PLSCR1 was found to be markedly increased in monocyte-derived macrophages compared to undifferentiated primary monocytes. Surprisingly, this 3-fold increase in PLSCR1 expression correlated with an apparent modification in the membrane topology of the protein at the cell surface of differentiated macrophages. While depletion of PLSCR1 in the monocytic THP-1 cell-line with specific shRNA did not inhibit the constitutive cell surface exposure of phosphatidylserine observed in differentiated macrophages, a net increase in the FcR-mediated phagocytic activity was measured in PLSCR1-depleted THP-1 cells and in bone marrow-derived macrophages from PLSCR1 knock-out mice. Reciprocally, phagocytosis was down-regulated in cells overexpressing PLSCR1. Since endogenous PLSCR1 was recruited both in phagocytic cups and in phagosomes, our results reveal a specific role for induced PLSCR1 expression in the modulation of the phagocytic process in differentiated macrophages.


Assuntos
Proteínas de Transferência de Fosfolipídeos/metabolismo , Receptores Fc/metabolismo , Animais , Células da Medula Óssea/citologia , Diferenciação Celular , Membrana Celular/metabolismo , Células Cultivadas , Regulação para Baixo , Células HeLa , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Monócitos/citologia , Monócitos/metabolismo , Fagocitose , Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/antagonistas & inibidores , Proteínas de Transferência de Fosfolipídeos/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo
15.
PLoS One ; 9(12): e113729, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25436999

RESUMO

The targeting of HIV-1 using antibodies is of high interest as molecular tools to better understand the biology of the virus or as a first step toward the design of new inhibitors targeting critical viral intracellular proteins. Small and highly stable llama-derived single-domain antibodies can often be functionally expressed as intracellular antibodies in the cytoplasm of eukaryotic cells. Using a selection method based on the Sos Recruitment System, a cytoplasmic yeast two-hybrid approach, we have isolated single-domain antibodies able to bind HIV-1 Vpr and Capside proteins in the yeast cytoplasm. One anti-Vpr single domain antibody was able to bind the HIV-1 regulatory Vpr protein in the cytoplasm of eukaryotic cells, leading to its delocalization from the nucleus to the cytoplasm. To our knowledge, this is the first description of a functional single-domain intrabody targeting HIV-1 Vpr, isolated using an in vivo cytoplasmic selection method that alleviates some limitations of the conventional yeast two-hybrid system.


Assuntos
Citoplasma/metabolismo , Anticorpos de Domínio Único/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/imunologia , Núcleo Celular/metabolismo , HIV-1/metabolismo , Células HeLa , Humanos , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Transfecção
16.
Med Sci (Paris) ; 30(6-7): 665-70, 2014.
Artigo em Francês | MEDLINE | ID: mdl-25014458

RESUMO

Adaptive immune responses are initiated by the recognition of antigens by T lymphocytes. Antigen recognition triggers the generation of immunological synapses. These are dynamic and finely organized cell-cell contacts formed between T lymphocytes and antigen presenting cells. Immunological synapse formation results from a major T cell reorganization process, involving the polarization of the actin cytoskeleton, the microtubule network and the intracellular vesicle traffic. These processes facilitate the generation, the dynamics and the regulation of molecular complexes at the synapse that are responsible for T cell activation. The human immunodeficiency virus (HIV) targets in various manners immunological synapse generation and function, thus modifying the capacity of infected T cells to respond to further antigen stimulation.


Assuntos
Sinapses Imunológicas/fisiologia , Ativação Linfocitária , Linfócitos T/imunologia , Animais , Vesículas Citoplasmáticas/metabolismo , Citoesqueleto/fisiologia , Humanos , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais
17.
Nat Commun ; 5: 3477, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24637612

RESUMO

Exosomes are small vesicles that are secreted by cells and act as mediators of cell to cell communication. Because of their potential therapeutic significance, important efforts are being made towards characterizing exosomal contents. However, little is known about the mechanisms that govern exosome biogenesis. We have recently shown that the exosomal protein syntenin supports exosome production. Here we identify the small GTPase ADP ribosylation factor 6 (ARF6) and its effector phospholipase D2 (PLD2) as regulators of syntenin exosomes. ARF6 and PLD2 affect exosomes by controlling the budding of intraluminal vesicles (ILVs) into multivesicular bodies (MVBs). ARF6 also controls epidermal growth factor receptor degradation, suggesting a role in degradative MVBs. Yet ARF6 does not affect HIV-1 budding, excluding general effects on Endosomal Sorting Complexes Required for Transport. Our study highlights a novel pathway controlling ILV budding and exosome biogenesis and identifies an unexpected role for ARF6 in late endosomal trafficking.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Exossomos/metabolismo , Corpos Multivesiculares/metabolismo , Fosfolipase D/metabolismo , Sinteninas/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Receptores ErbB/metabolismo , Exossomos/enzimologia , Exossomos/genética , Infecções por HIV/genética , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Corpos Multivesiculares/enzimologia , Corpos Multivesiculares/genética , Fosfolipase D/genética , Transporte Proteico , Sinteninas/genética
18.
J Virol ; 87(2): 1137-49, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23152508

RESUMO

Few broadly neutralizing antibodies targeting determinants of the HIV-1 surface envelope glycoprotein (gp120) involved in sequential binding to host CD4 and chemokine receptors have been characterized. While these epitopes show low diversity among various isolates, HIV-1 employs many strategies to evade humoral immune response toward these sensitive sites, including a carbohydrate shield, low accessibility to these buried cavities, and conformational masking. Using trimeric gp140, free or bound to a CD4 mimic, as immunogens in llamas, we selected a panel of broadly neutralizing single-domain antibodies (sdAbs) that bind to either the CD4 or the coreceptor binding site (CD4BS and CoRBS, respectively). When analyzed as monomers or as homo- or heteromultimers, the best sdAb candidates could not only neutralize viruses carrying subtype B envelopes, corresponding to the Env molecule used for immunization and selection, but were also efficient in neutralizing a broad panel of envelopes from subtypes A, C, G, CRF01_AE, and CRF02_AG, including tier 3 viruses. Interestingly, sdAb multimers exhibited a broader neutralizing activity spectrum than the parental sdAb monomers. The extreme stability and high recombinant production yield combined with their broad neutralization capacity make these sdAbs new potential microbicide candidates for HIV-1 transmission prevention.


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Anti-HIV/isolamento & purificação , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Anticorpos de Domínio Único/isolamento & purificação , Animais , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , Camelídeos Americanos , Reações Cruzadas , Anticorpos Anti-HIV/imunologia , Humanos , Imunização/métodos , Anticorpos de Domínio Único/imunologia
19.
PLoS One ; 7(7): e40331, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22792285

RESUMO

Monoclonal and recombinant antibodies are ubiquitous tools in diagnostics, therapeutics, and biotechnology. However, their biochemical properties lack optimal robustness, their bacterial production is not easy, and possibilities to create multifunctional fusion proteins based on them are limited. Moreover, the binding affinities of antibodies towards their antigens are suboptimal for many applications where they are commonly used. To address these issues we have made use of the concept of creating high binding affinity based on multivalent target recognition via exploiting some of the best features of immunoglobulins (Ig) and non-Ig-derived ligand-binding domains. We have constructed a small protein, named Neffin, comprised of a 118 aa llama Ig heavy chain variable domain fragment (VHH) fused to a ligand-tailored 57 aa SH3 domain. Neffin could be readily produced in large amounts (>18 mg/L) in the cytoplasm of E. coli, and bound with a subpicomolar affinity (K(d) 0.54 pM) to its target, the HIV-1 Nef protein. When expressed in human cells Neffin could potently inhibit Nef function. Similar VHH-SH3 fusion proteins could be targeted against many other proteins of interest and could have widespread use in diverse medical and biotechnology applications where biochemical robustness and strong binding affinity are required.


Assuntos
Fármacos Anti-HIV/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos de Domínio Único/farmacologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Fármacos Anti-HIV/química , Escherichia coli , Células HEK293 , Humanos , Cinética , Ligação Proteica , Proteínas Proto-Oncogênicas c-hck/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Anticorpos de Domínio Único/biossíntese , Anticorpos de Domínio Único/química , Produtos do Gene nef do Vírus da Imunodeficiência Humana/biossíntese , Domínios de Homologia de src
20.
J Virol ; 86(9): 4856-67, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22345475

RESUMO

HIV-1 Nef is essential for AIDS pathogenesis, but this viral protein is not targeted by antiviral strategies. The functions of Nef are largely related to perturbations of intracellular trafficking and signaling pathways through leucine-based and polyproline motifs that are required for interactions with clathrin-associated adaptor protein complexes and SH3 domain-containing proteins, such as the phagocyte-specific kinase Hck. We previously described a single-domain antibody (sdAb) targeting Nef and inhibiting many, but not all, of its biological activities. We now report a further development of this anti-Nef strategy through the demonstration of the remarkable inhibitory activity of artificial Nef ligands, called Neffins, comprised of the anti-Nef sdAb fused to modified SH3 domains. The Neffins inhibited all key activities of Nef, including Nef-mediated CD4 and major histocompatibility complex class I (MHC-I) cell surface downregulation and enhancement of virus infectivity. When expressed in T lymphocytes, Neffins specifically inhibited the Nef-induced mislocalization of the Lck kinase, which contributes to the alteration of the formation of the immunological synapse. In macrophages, Neffins inhibited the Nef-induced formation of multinucleated giant cells and podosome rosettes, and it counteracted the inhibitory activity of Nef on phagocytosis. Since we show here that these effects of Nef on macrophage and T cell functions were both dependent on the leucine-based and polyproline motifs, we confirmed that Neffins disrupted interactions of Nef with both AP complexes and Hck. These results demonstrate that it is possible to inhibit all functions of Nef, both in T lymphocytes and macrophages, with a single ligand that represents an efficient tool to develop new antiviral strategies targeting Nef.


Assuntos
Antivirais/metabolismo , HIV-1/metabolismo , Anticorpos de Cadeia Única/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Sequência de Aminoácidos , Antígenos CD4/metabolismo , Linhagem Celular , Regulação para Baixo/imunologia , Ordem dos Genes , HIV-1/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Macrófagos/metabolismo , Dados de Sequência Molecular , Fagocitose/imunologia , Ligação Proteica/imunologia , Transporte Proteico , Proteínas Proto-Oncogênicas c-hck/metabolismo , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Fator de Transcrição AP-1/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Domínios de Homologia de src/genética , Domínios de Homologia de src/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...