Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Microbiol ; 92: 103594, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32950136

RESUMO

Human noroviruses (HuNoVs) are a main cause of acute gastroenteritis worldwide. They are frequently involved in foodborne and waterborne outbreaks. Environmental transmission of the virus depends on two main factors: the ability of viral particles to remain infectious and their adhesion capacity onto different surfaces. Until recently, adhesion of viral particles to food matrices was mainly investigated by considering non-specific interactions (e.g. electrostatic, hydrophobic) and there was only limited information about infectious HuNoVs because of the absence of a reliable in vitro HuNoV cultivation system. Many HuNoV strains have now been described as having specific binding interactions with human Histo-Blood Group Antigens (HBGAs) and non-HBGA ligands found in food and the environment. Relevant approaches to the in vitro replication of HuNoVs were also proposed recently. On the basis of the available literature data, this review discusses the opportunities to use this new knowledge to obtain a better understanding of HuNoV transmission to human populations and better evaluate the hazard posed by HuNoVs in foodstuffs and the environment.


Assuntos
Antígenos de Grupos Sanguíneos/metabolismo , Infecções por Caliciviridae/metabolismo , Gastroenterite/metabolismo , Norovirus/metabolismo , Animais , Antígenos de Grupos Sanguíneos/genética , Infecções por Caliciviridae/terapia , Infecções por Caliciviridae/transmissão , Infecções por Caliciviridae/virologia , Gastroenterite/genética , Gastroenterite/terapia , Gastroenterite/virologia , Humanos , Norovirus/genética , Norovirus/isolamento & purificação , Norovirus/fisiologia , Ligação Proteica , Proteínas Virais/genética , Proteínas Virais/metabolismo
2.
Appl Environ Microbiol ; 84(1)2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29079627

RESUMO

Norovirus (NoV) is the leading cause of gastroenteritis outbreaks linked to oyster consumption. In this study, we investigated the potential of F-specific RNA bacteriophages (FRNAPH) as indicators of viral contamination in oysters by focusing especially on FRNAPH subgroup II (FRNAPH-II). These viral indicators have been neglected because their behavior is sometimes different from that of NoV in shellfish, especially during the depuration processes usually performed before marketing. However, a significant bias needs to be taken into account. This bias is that, in the absence of routine culture methods, NoV is targeted by genome detection, while the presence of FRNAPH is usually investigated by isolation of infectious particles. In this study, by targeting both viruses using genome detection, a significant correlation between the presence of FRNAPH-II and that of NoV in shellfish collected from various European harvesting areas impacted by fecal pollution was observed. Moreover, during their depuration, while the long period of persistence of NoV was confirmed, a similar or even longer period of persistence of the FRNAPH-II genome, which was over 30 days, was observed. Such a striking genome persistence calls into question the relevance of molecular methods for assessing viral hazards. Targeting the same virus (i.e., FRNAPH-II) by culture and genome detection in specimens from harvesting areas as well as during depuration, we concluded that the presence of genomes in shellfish does not provide any information on the presence of the corresponding infectious particles. In view of these results, infectious FRNAPH detection should be reconsidered as a valuable indicator in oysters, and its potential for use in assessing viral hazard needs to be investigated.IMPORTANCE This work brings new data about the behavior of viruses in shellfish, as well as about the relevance of molecular methods for their detection and evaluation of the viral hazard. First, a strong correlation between the presence of F-specific RNA bacteriophages of subgroup II (FRNAPH-II) and that of norovirus (NoV) in shellfish impacted by fecal contamination has been observed when both viruses are detected using molecular approaches. Second, when reverse transcription-PCR and culture are used to detect FRNAPH-II in shellfish, it appears that the genomes of the viruses present a longer period of persistence than infectious virus, and thus, virus genome detection fails to give information about the concomitant presence of infectious viruses. Finally, this study shows that FRNAPH persist at least as long as NoV does. These data are major arguments to reconsider the potential of FRNAPH as indicators of shellfish viral quality.


Assuntos
Genoma Viral , Norovirus/isolamento & purificação , Ostreidae/virologia , Fagos RNA/isolamento & purificação , Medição de Risco/métodos , Frutos do Mar/virologia , Animais , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , Fezes/virologia , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/virologia , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/estatística & dados numéricos , Sensibilidade e Especificidade , Ensaio de Placa Viral/estatística & dados numéricos
3.
Appl Environ Microbiol ; 82(18): 5709-19, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27422833

RESUMO

UNLABELLED: Human noroviruses (HuNoVs) are the main cause of shellfish-borne gastroenteritis outbreaks. In the absence of routine technical approaches allowing infectious particles to be detected, this viral pathogen is currently targeted by genome research, leading to difficult interpretations. In this study, we investigated the potential of F-specific RNA bacteriophages (FRNAPH) as fecal and viral contamination indicators in shellfish and water from a local harvesting area. FRNAPH were also used as microbial source tracking tools. Constraints imposed by detection limits are illustrated here by the detection of infectious FRNAPH in several samples in the absence of FRNAPH genomes. The opposite situation was also observed, likely explained by the persistence of the genomes being greater than infectivity. Similar considerations may be applied to HuNoVs, suggesting that HuNoV genome targeting is of limited relevance in assessing infectious risks. While FRNAPH did not provide any benefits compared to Escherichia coli as fecal pollution indicators in water, novel observations were made in shellfish: contrary to E. coli, a seasonal trend of infectious FRNAPH concentrations was observed. These concentrations were higher than those found in water, confirming bioaccumulation in shellfish. This study also underlines a relationship between the presence of HuNoV genomes and those of human-specific FRNAPH subgroup II (FRNAPH-II) in shellfish collected throughout Europe. Further research should be undertaken to evaluate FRNAPH potential as an indicator of the presence of infectious HuNoVs. To this end, shellfish involved in HuNoV-caused gastroenteritis outbreaks should be analyzed for the presence of infectious FRNAPH-II. IMPORTANCE: This work provides new data about the use of F-specific RNA phages (FRNAPH) as a tool for evaluating fecal or viral contamination, especially in shellfish. In our case study, FRNAPH did not provide any benefits compared to E. coli as fecal pollution indicators in water but were found to be very useful in shellfish. Their concentrations in shellfish were higher than those found in the surrounding water, confirming bioaccumulation. This study also underlines a relationship between the presence of human norovirus genomes (HuNoVs) and those of FRNAPH subgroup II (FRNAPH-II). Considering that the two virus types have similar behaviors and since FRNAPH infectivity can be investigated, the specific detection of infectious FRNAPH-II could be regarded as an indication of the presence of infectious HuNoVs. The contribution of infectious human FRNAPH targeting for assessing the viral risk associated with HuNoVs in shellfish should thus be investigated.


Assuntos
Infecções por Caliciviridae/epidemiologia , Doenças Transmitidas por Alimentos/epidemiologia , Modelos Biológicos , Norovirus/isolamento & purificação , Fagos RNA/isolamento & purificação , Frutos do Mar/virologia , Microbiologia da Água , Animais , Infecções por Caliciviridae/virologia , Escherichia coli/virologia , Doenças Transmitidas por Alimentos/virologia , Humanos , Medição de Risco
4.
J Virol Methods ; 224: 95-101, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26318917

RESUMO

In recent years, foodborne viruses, especially human noroviruses (NoV) and hepatitis A virus (HAV), have been increasingly reported as the causes of foodborne disease outbreaks. Soft red fruits, especially raspberries, have a high incidence among the types of food concerned. Due to low infectious doses and low concentrations of enteric viruses in food samples, it is necessary to have an efficient and rapid detection method to implement prevention measures. A standard method for virus detection and quantification in food, including raspberries (XP CEN ISO/TS 15216-1 and -2, 2013) is currently available. This method proposes a consensus detection approach by RT-real time PCR (RT-qPCR) but also a virus extraction procedure based on the elution-concentration principle. In this study, an alternative method of extraction in which RNAs are directly extracted from food matrices (based on direct RNA extraction) has been optimized. First, each step was improved to make it a highly rapid, specific and simple method. Second, the standard virus concentration method was compared with the optimized direct RNA extraction one. Human enteric viral surrogates, Murine Norovirus (MNV) and F-specific RNA bacteriophage GA, were selected according to their adhesion properties and resistance to pH close to our main targets (NoV and HAV). Raspberries were artificially contaminated using two different techniques (immersion and spotting) in order to define a recovery rate and the amounts of virus recovered. Results showed that the direct RNA extraction method revealed significantly higher viral extraction efficiency (46.2%) than the elution-concentration method (20.3%), with similar proportions of inhibitors for both. In the same way with inoculation by spotting, the best recovery rate of GA phage (39.7% against 0.7%) and MNV (42.8% against 0.5%) was observed by direct RNA extraction. For the lowest concentrations of phage and virus in the immersion bath, only the direct RNA extraction method allowed their recovery. Direct RNA extraction proved to be more effective (best recovery rate), faster (<8h) and simpler (fewer steps) than the one proposed in the CEN ISO standard method when it came to detecting enteric viruses on raspberries.


Assuntos
Contaminação de Alimentos , Microbiologia de Alimentos/métodos , Inocuidade dos Alimentos/métodos , Genoma Viral , Técnicas de Diagnóstico Molecular/métodos , Rubus/virologia , Vírus/isolamento & purificação , RNA Viral/isolamento & purificação , Sensibilidade e Especificidade , Fatores de Tempo , Vírus/genética
5.
J Appl Microbiol ; 109(1): 166-79, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20059620

RESUMO

AIMS: A polyphasic approach was used to study the biodiversity bacteria associated with biocorrosion processes, in particular sulfate-reducing bacteria (SRB) and thiosulfate-reducing bacteria (TRB) which are described to be particularly aggressive towards metallic materials, notably via hydrogen sulfide release. METHODS AND RESULTS: To study this particular flora, an infrared spectra library of 22 SRB and TRB collection strains were created using a Common Minimum Medium (CMM) developed during this study and standardized culture conditions. The CMM proved its ability to allow for growth of both SRB and TRB strains. These sulfurogen collection strains were clearly discriminated and differentiated at the genus level by fourier transform infrared (FT-IR) spectroscopy. In a second step, infrared spectra of isolates, recovered from biofilms formed on carbon steel coupons immersed for 1 year in three different French harbour areas, were compared to the infrared reference spectra library. In parallel, molecular methods (M13-PCR and 16S rRNA gene sequencing) were used to qualitatively evaluate the intra- and inter-species genetic diversity of biofilm isolates. The biodiversity study indicated that strains belonging to the Vibrio genus were the dominant population; strains belonging to the Desulfovibrio genus (SRB) and Peptostreptococcaceae were also identified. CONCLUSION: Overall, the combination of the FT-IR spectroscopy and molecular approaches allowed for the taxonomic and ecological study of a bacterial flora, cultivated on CMM, associated with microbiology-induced corrosion (MIC) processes. SIGNIFICANCE AND IMPACT OF THE STUDY: Via the use of the CMM medium, the culture of marine bacteria (including both SRB and TRB bacteria) was allowed, and the implication of nonsulforogen bacteria in MIC was observed. Their involvement in the biocorrosion phenomena will have to be studied and taken into account in the future.


Assuntos
Biodiversidade , Bactérias Redutoras de Enxofre/classificação , Microbiologia da Água , Biofilmes , Corrosão , Meios de Cultura , DNA Bacteriano/genética , Genes Bacterianos , Genes de RNAr , Filogenia , Análise de Sequência de DNA , Espectroscopia de Infravermelho com Transformada de Fourier , Aço , Sulfatos/metabolismo , Bactérias Redutoras de Enxofre/genética , Bactérias Redutoras de Enxofre/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...