Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 14241, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859977

RESUMO

Flavonols play key roles in many plant defense mechanisms, consequently they are frequently investigated as stress sensitive factors in relation to several oxidative processes. It is well known that grapevine (Vitis vinifera L.) can synthesize various flavonol glycosides in the leaves, however, very little information is available regarding their distribution along the cane at different leaf levels. In this work, taking into consideration of leaf position, the main flavonol glycosides of a red grapevine cultivar (Cabernet Sauvignon) were profiled and quantified by HPLC-DAD analysis. It was found that amount of four flavonol glycosides, namely, quercetin-3-O-galactoside, quercetin-3-O-glucoside, kaempferol-3-O-glucoside and kaempferol-3-O-glucuronide decreased towards the shoot tip. Since leaf age also decreases towards the shoot tip, the obtained results suggest that these compounds continuously formed by leaf aging, resulting in their accumulation in the older leaves. In contrast, quercetin-3-O-glucuronide (predominant form) and quercetin-3-O-rutinoside were not accumulated significantly by aging. We also pointed out that grapevine boosted the flavonol biosynthesis in September, and flavonol profile differed significantly in the two seasons. Our results contribute to the better understanding of the role of flavonols in the antioxidant defense system of grapevine.


Assuntos
Folhas de Planta/química , Folhas de Planta/metabolismo , Vitis/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão/métodos , Flavonóis/análise , Flavonóis/metabolismo , Frutas/química , Glucosídeos/química , Glucuronídeos/química , Glicosídeos/análise , Glicosídeos/metabolismo , Quempferóis/química , Monossacarídeos/química , Quercetina/análogos & derivados , Quercetina/química , Estações do Ano
2.
J Photochem Photobiol B ; 190: 137-145, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30529924

RESUMO

Over the past decades, nanotechnology has received great attention and brought revolutionary solutions for a number of challenges in scientific fields. Industrial, agricultural and medical applications of engineered nanomaterials have increased intensively. The ability of titanium dioxide nanoparticles (TiO2 NPs) to produce reactive oxygen species (ROS), when excited by ultra-violet (UV) light, makes them useful for effectively inactivate various pathogens. It is known that ROS also have signalling role in living organisms, therefore, TiO2 NPs-induced ROS can influence both enzymatic and non-enzymatic defence systems, and could play a role in the resistance of plants to pathogens. Herein, we studied the photocatalytic stress responses of grapevine (Vitis vinifera L.) as model plant, when exposed to a well-known photocatalyst, Degussa P25 TiO2 NPs. The photocatalytically produced ROS such as superoxide anion, hydroxyl radical and singlet oxygen were confirmed by electron paramagnetic resonance spectroscopy. Foliar exposure of five red cultivars (Cabernet sauvignon, Cabernet franc, Merlot, Kékfrankos and Kadarka) was carried out in blooming phenophase under field condition where plants are exposed to natural sunlight with relatively high UV radiation (with a maximum of ~ 45 W m-2). After two weeks of exposure, the effects of photogenerated ROS on the total phenolic content, antioxidant capacity, flavonol profile and the main macro-, microelements of the leaves were studied in detail. We found that foliar application of TiO2 NPs boosted the total phenolic content and biosynthesis of the leaf flavonols depending on the grapevine variety. Photocatalytically active TiO2 NPs also increased K, Mg, Ca, B and Mn levels in the leaves as shown by ICP-AES measurements.


Assuntos
Folhas de Planta/efeitos dos fármacos , Titânio/farmacologia , Vitis/química , Antioxidantes/análise , Flavonóis/análise , Nanoestruturas/química , Nanoestruturas/efeitos da radiação , Fenóis/análise , Folhas de Planta/química , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Titânio/efeitos da radiação , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...