Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(6): 1395-1401, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36749682

RESUMO

Intramolecular hydrogen transfer, a reaction where donor and acceptor sites of a hydrogen atom are part of the same molecule, is a ubiquitous reaction in biochemistry and organic synthesis. In this work, we report hydronium ion (H3O+) production from aminobenzoic acid (ABA) after core-level ionization with soft X-ray synchrotron radiation. The formation of H3O+ during the fragmentation requires that at least two hydrogen atoms migrate to one of the oxygen atoms within the molecule. The comparison of two structural isomers, ortho- and meta-ABA, revealed that the production of H3O+ depends strongly on the structure of the molecule, the ortho-isomer being much more prone to produce H3O+. The isomer-dependency suggests that the amine group acts as a donor in the hydrogen transfer process. In the case of ortho-ABA, detailed H3O+ production pathways were investigated using photoelectron-photoion-photoion coincidence (PEPIPICO) spectroscopy. It was found that H3O+ can result from a direct two-body dissociation but also from sequential fragmentation processes.

2.
RSC Adv ; 11(4): 2103-2111, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35424180

RESUMO

Ca- and Cl-containing nanoparticles are common in atmosphere, originating for example from desert dust and sea water. The properties and effects on atmospheric processes of these aerosol particles depend on the relative humidity (RH) as they are often both hygroscopic and deliquescent. We present here a study of surface structure of free-flying CaCl2 nanoparticles (CaCl2-NPs) in the 100 nm size regime prepared at different humidity levels (RH: 11-85%). We also created mixed nanoparticles by aerosolizing a solution of CaCl2 and phenylalanine (Phe), which is a hydrophobic amino acid present in atmosphere. Information of hydration state of CaCl2-NPs and production of mixed CaCl2 + Phe nanoparticles was obtained using soft X-ray absorption spectroscopy (XAS) at Ca 2p, Cl 2p, C 1s, and O 1s edges. We also report Ca 2p and Cl 2p X-ray absorption spectra of an aqueous CaCl2 solution. The O 1s X-ray absorption spectra measured from hydrated CaCl2-NPs resemble liquid-like water spectrum, which is heavily influenced by the presence of ions. Core level spectra of Ca2+ and Cl- ions do not show a clear dependence of % RH, indicating that the first coordination shell remains similar in all measured hydrated CaCl2-NPs, but they differ from aqueous solution and solid CaCl2.

3.
Phys Chem Chem Phys ; 22(46): 26806-26818, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33227117

RESUMO

A comprehensive electron spectroscopic study combined with partial electron yield measurements around the Br 1s ionization threshold of HBr at ≅13.482 keV is reported. In detail, the Br 1s-1 X-ray absorption spectrum, the 1s-1 photoelectron spectrum as well as the normal and resonant KLL Auger spectra are presented. Moreover, the L-shell Auger spectra measured with photon energies below and above the Br 1s-1 ionization energy as well as on top of the Br 1s-1σ* resonance are shown. The latter two Auger spectra represent the second step of the decay cascade subsequent to producing a Br 1s-1 core hole. The measurements provide information on the electron and nuclear dynamics of deep core-excited states of HBr on the femtosecond timescale. From the different spectra the lifetime broadening of the Br 1s-1 single core-hole state as well as of the Br(2s-2,2s-12p-1,2p-2)  double core-hole states are extracted and discussed. The slope of the strongly dissociative HBr 2p-2σ* potential energy curve is found to be about -13.60 eV Å-1. The interpretation of the experimental data, and in particular the assignment of the spectral features in the KLL and L-shell Auger spectra, is supported by relativistic calculations for HBr molecule and atomic Br.

4.
Phys Chem Chem Phys ; 21(10): 5448-5454, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30793147

RESUMO

Hard X-ray electron spectroscopic study of iodine 1s and 2s photoionization of iodomethane (CH3I) and trifluoroiodomethane (CF3I) molecules is presented. The experiment was carried out at the SPring-8 synchrotron radiation facility in Japan. The results are analyzed with the aid of relativistic molecular and atomic calculations. It is shown that charge redistribution within the molecule is experimentally observable even for very deep levels and is a function of the number of electron vacancies. We also show that the analysis of Auger spectra subsequent to hard X-ray photoionization can be used to provide insight into charge distribution in molecules and highlight the necessity of quantum electrodynamics corrections in the prediction of core shell binding energies in molecules that contain heavy atoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...