Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2660: 295-310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37191806

RESUMO

DEPDC1B (aliases BRCC3, XTP8, XTP1) is a DEP (Dishevelled, Egl-1, Pleckstrin) and Rho-GAP-like domains containing predominately membrane-associated protein. Earlier, we and others have reported that DEPDC1B is a downstream effector of Raf-1 and long noncoding RNA lncNB1, and an upstream positive effector of pERK. Consistently, DEPDC1B knockdown is associated with downregulation of ligand-stimulated pERK expression. We demonstrate here that DEPDC1B N-terminus binds to the p85 subunit of PI3K, and DEPDC1B overexpression results in decreased ligand-stimulated tyrosine phosphorylation of p85 and downregulation of pAKT1. Collectively, we propose that DEPDC1B is a novel cross-regulator of AKT1 and ERK, two of the prominent pathways of tumor progression. Our data showing high levels of DEPDC1B mRNA and protein during the G2/M phase have significant implications in cell entry into mitosis. Indeed, DEPDC1B accumulation during the G2/M phase has been associated with disassembly of focal adhesions and cell de-adhesion, referred to as a DEPDC1B-mediated de-adhesion mitotic checkpoint. DEPDC1B is a direct target of transcription factor SOX10, and SOX10-DEPDC1B-SCUBE3 axis has been associated with angiogenesis and metastasis. The Scansite analysis of the DEPDC1B amino acid sequence shows binding motifs for three well-established cancer therapeutic targets CDK1, DNA-PK, and aurora kinase A/B. These interactions and functionalities, if validated, may further implicate DEPDC1B in regulation of DNA damage-repair and cell cycle progression processes. Finally, a survey of the publicly available datasets indicates that high DEPDC1B expression is a viable biomarker in breast, lung, pancreatic and renal cell carcinomas, and melanoma. Currently, the systems and integrative biology of DEPDC1B is far from comprehensive. Future investigations are necessary in order to understand how DEPDC1B might impact AKT, ERK, and other networks, albeit in a context-dependent manner, and influence the actionable molecular, spatial, and temporal vulnerabilities within these networks in cancer cells.


Assuntos
Proteínas de Ciclo Celular , Mitose , Linhagem Celular Tumoral , Ligantes , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo
2.
Free Radic Biol Med ; 199: 17-25, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36804453

RESUMO

Previously, we showed wild-type (WT) and mutant (mt) forms of p53 differentially regulate ROS generation by NADPH oxidase-4 (NOX4). We found that WT-p53 suppresses TGF-ß-induced NOX4, ROS production, and cell migration, whereas tumor-associated mt-p53 proteins enhance NOX4 expression and cell migration by TGF-ß/SMAD3-dependent mechanisms. In this study, we investigated the role of mutant p53-induced NOX4 on the cancer cell secretome and the effects NOX4 signaling have on the tumor microenvironment (TME). We found conditioned media collected from H1299 lung epithelial cells stably expressing either mutant p53-R248Q or R273H promotes the migration and invasion of naïve H1299 cells and chemotactic recruitment of THP-1 monocytes. These effects were diminished with conditioned media from cells co-transfected with dominant negative NOX4 (P437H). We utilized immunoblot-based cytokine array analysis to identify factors in mutant p53 H1299 cell conditioned media that promote cell migration and invasion. We found CCL5 was significantly reduced in conditioned media from H1299 cells co-expressing p53-R248Q and dominant negative NOX4. Moreover, neutralization of CCL5 reduced autocrine-mediated H1299 cell mobility. Furthermore, CCL5 and TGF-beta from M2-polarized macrophages have a significant role in crosstalk and H1299 cell migration and invasion. Collectively, our findings provide further insight into NOX4-based communication in the tumor microenvironment and its potential as a therapeutic target affecting metastatic disease progression.


Assuntos
Secretoma , Proteína Supressora de Tumor p53 , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/farmacologia , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Humanos
3.
Antioxidants (Basel) ; 10(2)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557266

RESUMO

Previously, we have shown TGF-ß-induced NOX4 expression is involved in the epithelial-to-mesenchymal transition (EMT), a process critical for cancer metastasis, and that wild-type (WT) and mutant (Mut) p53 have divergent effects on TGF-ß induction of NOX4: WT-p53 suppresses whereas Mut-p53 augments NOX4 mRNA and protein production in several tumor cell models. We sought to validate and extend our model by analyzing whole-exome data of primary tumor samples in The Cancer Genome Atlas (TCGA). We constructed a Pan-Cancer dataset from 23 tumor types and explored NOX4 expression patterns in relation to EMT and patient survival. NOX4 mRNA levels increase as a function of cancer progression in several cancers and correlate with Mut-p53 mRNA and genes involved in programs of EMT, cellular adhesion, migration, and angiogenesis. Tumor macrophages appear to be a source of NOX2, whose association with genetic programs of cancer progression emulate that of NOX4. Notably, increased NOX4 expression is linked to poorer survival in patients with Mut-TP53, but better survival in patients with WT-TP53. NOX4 is negatively associated with markers of apoptosis and positively with markers of proliferation in patients with Mut-TP53, consistent with their poorer survival. These findings suggest that TP53 mutations could "switch" NOX4 from being protective and an indicator of good prognosis to deleterious by promoting programs favoring cancer progression.

4.
Methods Mol Biol ; 1982: 473-485, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31172490

RESUMO

There is mounting evidence indicating that reactive oxygen species (ROS) play a crucial role in cell migration and invasion. Our previous studies have demonstrated the NADPH oxidase (NOX) family of enzymes are a source of ROS in different cell types undergoing migration. Several NOX enzymes are induced or activated in processes including wound repair and maintenance of epithelial barriers, as well as in promoting metastatic cell migration and invasiveness. This chapter outlines three different in vitro assays used to examine how NOX enzymes are involved in cell motility: scratch-wound repair, Matrigel invasion, and migration from confluent cell monolayer boundaries created by cell culture inserts. The three methods provide a range of experimental approaches for delineating roles of NOX enzymes in cell migration through manipulation of the expression or activities of the endogenous or overexpressed oxidases.


Assuntos
Movimento Celular , NADPH Oxidases/metabolismo , Animais , Biomarcadores , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Humanos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Cicatrização
5.
Peptides ; 120: 170017, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30273693

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) is a growth factor for lung cancer cells. PACAP-27 or PACAP-38 binds with high affinity to non-small cell lung cancer (NSCLC) cells, causing elevated cytosolic Ca2+, increased proliferation and increased phosphorylation of extracellular regulated kinase (ERK) and the epidermal growth factor receptor (EGFR). The role of reactive oxygen species (ROS) was investigated in these processes. Addition of PACAP-38 to NCI-H838 or A549 cells increased the tyrosine phosphorylation of the EGFR, HER2 and ERK significantly by 4-, 3-, and 2-fold, respectively. The transactivation of the EGFR and HER2 was inhibited by gefitinib or lapatinib (tyrosine kinase inhibitors), PACAP (6-38) (PAC1 antagonist), N-acetylcysteine (NAC is an anti-oxidant) or dipheyleneiodonium (DPI is an inhibitor of Nox and Duox enzymes). PACAP-38 addition to NSCLC cells increased ROS which was inhibited by PACAP (6-38), NAC or DPI. Nox1, Nox2, Nox3, Nox4, Nox5, Duox1 and Duox2 mRNA was present in many NSCLC cell lines. PACAP-38 stimulated the growth of NSCLC cells whereas PACAP (6-38), gefitinib or DPI inhibited proliferation. The results show that ROS are essential for PAC1 to regulate EGFR and HER2 transactivation as well as proliferation of NSCLC cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fosfatase 2 de Especificidade Dupla/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ativação Transcricional , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Fosfatase 2 de Especificidade Dupla/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/genética
6.
J Immunol ; 202(2): 428-440, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30559322

RESUMO

Engagement of the BCR with Ags triggers signaling pathways for commitment of B lymphocyte responses that can be regulated, in part, by reactive oxygen species. To investigate the functional relevance of reactive oxygen species produced in primary B cells, we focused on the role of the hydrogen peroxide generator Duox1 in stimulated splenic B cells under the influence of the TH2 cytokine IL-4. We found that H2O2 production in wild type (WT) and Nox2-deficient CD19+ B cells was boosted concomitantly with enhanced expression of Duox1 following costimulation with BCR agonists together with IL-4, whereas stimulated Duox1-/- cells showed attenuated H2O2 release. We examined whether Duox1-derived H2O2 contributes to proliferative activity and Ig isotype production in CD19+ cells upon BCR stimulation. Duox1-/- CD19+ B cells showed normal responses of Ig production but a higher rate of proliferation than WT or Nox2-deficient cells. Furthermore, we demonstrated that the H2O2 scavenger catalase mimics the effect of Duox1 deficiency by enhancing proliferation of WT CD19+ B cells in vitro. Results from immunized mice reflected the in vitro observations: T cell-independent Ag induced increased B cell expansion in germinal centers from Duox1-/- mice relative to WT and Nox2-/- mice, whereas immunization with T cell-dependent or -independent Ag elicited normal Ig isotype secretion in the Duox1 mutant mice. These observations, obtained both by in vitro and in vivo approaches, strongly suggest that Duox1-derived hydrogen peroxide negatively regulates proliferative activity but not Ig isotype production in primary splenic CD19+ B cells.


Assuntos
Linfócitos B/imunologia , Oxidases Duais/metabolismo , Centro Germinativo/imunologia , Peróxido de Hidrogênio/metabolismo , Interleucina-4/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Animais , Antígenos CD19/metabolismo , Proliferação de Células , Células Cultivadas , Oxidases Duais/genética , Switching de Imunoglobulina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Regulação para Cima
7.
Oncotarget ; 8(27): 44379-44397, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28574838

RESUMO

Previously, we showed wild-type (WT) and mutant (mut) p53 differentially regulate reactive oxygen species (ROS) generation by NADPH oxidase-4 (NOX4): p53-WT suppresses TGFß-induced NOX4, ROS and cell migration, whereas tumor-associated mut-p53 proteins enhance NOX4 expression and cell migration. Here, we extended our findings on the effects of p53 on NOX4 in several tumors and examined the basis of NOX4 transcriptional regulation by p53 and SMAD3. Statistical analysis of expression data from primary tumors available from The Cancer Genome Atlas (TCGA) detected correlations between mut-p53 and increased NOX4 expression. Furthermore, by altering p53 levels in cell culture models we showed several common tumor-associated mutant forms support TGFß/SMAD3-dependent NOX4 expression. Deletion analysis revealed two critical SMAD3 binding elements (SBE) required for mut-p53-dependent NOX4 induction, whereas p53-WT caused dose-dependent suppression of NOX4 transcription. ChIP analysis revealed SMAD3 and p53-WT or mut-p53 associate with SBEs and p53 response elements in a TGFß-dependent manner. Interestingly, the repressive effects of p53-WT on NOX4 were relieved by mutation of its transactivation domain or histone deacetylase (HDAC) inhibitor treatment. Overexpression of p300, a transcriptional co-regulator and histone acetyltransferase (HAT), enhanced p53-mediated NOX4 induction, whereas HAT-inactive p300 reduced NOX4 expression. Mut-p53 augmented TGFß-stimulated histone acetylation within the NOX4 promoter. Finally, wound assays demonstrated NOX4 and p300 promote TGFß/mut-p53-mediated cell migration. Our studies provide new insight into TGFß/SMAD3 and mut-p53-mediated NOX4 induction involving epigenetic control of NOX4 in tumor cell migration, suggesting NOX4 is a potential therapeutic target to combat tumor progression and metastasis.


Assuntos
Regulação da Expressão Gênica , Histonas/metabolismo , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Sequência Conservada , Regulação da Expressão Gênica/efeitos dos fármacos , Histona Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , Humanos , Modelos Biológicos , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Elementos de Resposta , Deleção de Sequência , Proteína Smad3/genética , Proteína Smad3/metabolismo , Ativação Transcricional , Fator de Crescimento Transformador beta/farmacologia
8.
Free Radic Biol Med ; 96: 99-115, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27094494

RESUMO

Nox1 is an abundant source of reactive oxygen species (ROS) in colon epithelium recently shown to function in wound healing and epithelial homeostasis. We identified Peroxiredoxin 6 (Prdx6) as a novel binding partner of Nox activator 1 (Noxa1) in yeast two-hybrid screening experiments using the Noxa1 SH3 domain as bait. Prdx6 is a unique member of the Prdx antioxidant enzyme family exhibiting both glutathione peroxidase and phospholipase A2 activities. We confirmed this interaction in cells overexpressing both proteins, showing Prdx6 binds to and stabilizes wild type Noxa1, but not the SH3 domain mutant form, Noxa1 W436R. We demonstrated in several cell models that Prdx6 knockdown suppresses Nox1 activity, whereas enhanced Prdx6 expression supports higher Nox1-derived superoxide production. Both peroxidase- and lipase-deficient mutant forms of Prdx6 (Prdx6 C47S and S32A, respectively) failed to bind to or stabilize Nox1 components or support Nox1-mediated superoxide generation. Furthermore, the transition-state substrate analogue inhibitor of Prdx6 phospholipase A2 activity (MJ-33) was shown to suppress Nox1 activity, suggesting Nox1 activity is regulated by the phospholipase activity of Prdx6. Finally, wild type Prdx6, but not lipase or peroxidase mutant forms, supports Nox1-mediated cell migration in the HCT-116 colon epithelial cell model of wound closure. These findings highlight a novel pathway in which this antioxidant enzyme positively regulates an oxidant-generating system to support cell migration and wound healing.


Assuntos
Movimento Celular/genética , NADPH Oxidase 1/genética , Peroxirredoxina VI/genética , Cicatrização , Sequência de Aminoácidos/genética , Colo/metabolismo , Epitélio/metabolismo , Glutationa Peroxidase/metabolismo , Células HCT116 , Humanos , NADP/metabolismo , NADPH Oxidase 1/metabolismo , Peroxirredoxina VI/metabolismo , Fosfolipases A2/metabolismo , Fosforilação , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
9.
Free Radic Biol Med ; 73: 190-200, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24853759

RESUMO

In the thyroid gland Duox2-derived H2O2 is essential for thyroid hormone biosynthesis. Several patients were identified with partial or severe iodide organification defects caused by mutation in the gene for Duox2 or its maturation factor, DuoxA2. A Duox2-deficient (Duox2(thyd)) mouse model enabled in vivo investigation of its critical function in thyroid tissues, but its roles proposed in host defense or other innate responses in nonthyroid tissues remain less certain. These mice carry a spontaneous DUOX2 missense mutation, a T→G transversion, in exon 16 that changes the highly conserved valine 674 to glycine and results in severe congenital hypothyroidism. The exact mechanism underlying the effects of the V674G mutation has not been elucidated at the molecular or cellular level. To determine how the V674G mutation leads to congenital hypothyroidism, we introduced the same mutation into human Duox2 or Duox1 cDNAs and expressed them in HEK-293 cells stably expressing the corresponding DuoxA proteins. We found that the valine→glycine mutant Duox proteins fail to produce H2O2, lose their plasma membrane localization pattern, and are retained within the endoplasmic reticulum. The Duox2 mutant binds to DuoxA2, but appears to be unstable owing to this retention. Immunohistochemical staining of Duox2 in murine salivary gland ducts showed that Duox2 in mutant mice loses its condensed apical plasma membrane localization pattern characteristic of wild-type Duox2 and accumulates in punctate vesicular structures within cells. Our findings demonstrate that changing the highly conserved valine 674 in Duox2 leads to impaired subcellular targeting and reactive oxygen species release required for hormonogenesis, resulting in congenital hypothyroidism.


Assuntos
Hipotireoidismo/genética , Proteínas de Membrana/metabolismo , NADPH Oxidases/genética , Animais , Linhagem Celular , Membrana Celular/metabolismo , Oxidases Duais , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Peróxido de Hidrogênio/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto/genética , NADPH Oxidases/metabolismo , Transporte Proteico , Glândulas Salivares/metabolismo , Transfecção
10.
Am J Respir Cell Mol Biol ; 50(1): 125-34, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23962049

RESUMO

Oxidative stress has been implicated in the pathogenesis of bronchial asthma. Besides granulocytes, the airway epithelium can produce large amounts of reactive oxygen species and can contribute to asthma-related oxidative stress. Histamine is a major inflammatory mediator present in large quantities in asthmatic airways. Whether histamine triggers epithelium-derived oxidative stress is unknown. We therefore aimed at characterizing human airway epithelial H2O2 production stimulated by histamine. We found that air-liquid interface cultures of primary human bronchial epithelial cells (BECs) and an immortalized BEC model (Cdk4/hTERT HBEC) produce H2O2 in response to histamine. The main source of airway epithelial H2O2 is an NADPH dual oxidase, Duox1. Out of the four histamine receptors (H1R-H4R), H1R has the highest expression in BECs and mediates the H2O2-producing effects of histamine. IL-4 induces Duox1 gene and protein expression levels and enhances histamine-induced H2O2 production by epithelial cells. Using HEK-293 cells expressing Duox1 or Duox2 and endogenous H1R, histamine triggers an immediate intracellular calcium signal and H2O2 release. Overexpression of H1R further increases the oxidative output of Duox-expressing HEK-293 cells. Our observations show that BECs respond to histamine with Duox-mediated H2O2 production. These findings reveal a mechanism that could be an important contributor to oxidative stress characteristic of asthmatic airways, suggesting novel therapeutic targets for treating asthmatic airway disease.


Assuntos
Brônquios/metabolismo , Células Epiteliais/metabolismo , Histamina/metabolismo , Peróxido de Hidrogênio/metabolismo , NADPH Oxidases/metabolismo , Receptores Histamínicos H1/metabolismo , Células Cultivadas , Quinase 4 Dependente de Ciclina/metabolismo , Citocinas/metabolismo , Oxidases Duais , Células HEK293 , Humanos , Interleucina-4/metabolismo , Telomerase/metabolismo , Células Th2/metabolismo
11.
Free Radic Biol Med ; 53(7): 1489-99, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22728268

RESUMO

The epithelial-to-mesenchymal transition (EMT) is the development of increased cell plasticity that occurs normally during wound healing and embryonic development and can be coopted for cancer invasion and metastasis. TGF-beta induces EMT but the mechanism is unclear. Our studies suggest that Nox4, a member of the NADPH oxidase (Nox) family, is a source of reactive oxygen species (ROS) affecting cell migration and fibronectin expression, an EMT marker, in normal and metastatic breast epithelial cells. We found that TGF-beta induces Nox4 expression (mRNA and protein) and ROS generation in normal (MCF10A) and metastatic (MDA-MB-231) human breast epithelial cells. Conversely, cells expressing a dominant-negative form of Nox4 or Nox4-targeted shRNA showed significantly lower ROS production on TGF-beta treatment. Expression of a constitutively active TGF-beta receptor type I significantly increased Nox4 promoter activity, mRNA and protein expression, and ROS generation. Nox4 transcriptional regulation by TGF-beta was SMAD3 dependent based on the effect of constitutively active SMAD3 increasing Nox4 promoter activity, whereas dominant-negative SMAD3 or SIS3, a SMAD3-specific inhibitor, had the opposite effect. Furthermore, Nox4 knockdown, dominant-negative Nox4 or SMAD3, or SIS3 blunted TGF-beta induced wound healing and cell migration, whereas cell proliferation was not affected. Our experiments further indicate that Nox4 plays a role in TGF-beta regulation of fibronectin mRNA expression, based on the effects of dominant-negative Nox4 in reducing fibronectin mRNA in TGF-beta-treated MDA-MB-231and MCF10A cells. Collectively, these data indicate that Nox4 contributes to NADPH oxidase-dependent ROS production that may be critical for the progression of the EMT in breast epithelial cells, and thereby has therapeutic implications.


Assuntos
Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Glândulas Mamárias Humanas/metabolismo , NADPH Oxidases/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Fibronectinas/genética , Fibronectinas/metabolismo , Regulação da Expressão Gênica , Humanos , Isoquinolinas/farmacologia , Glândulas Mamárias Humanas/citologia , NADPH Oxidase 4 , NADPH Oxidases/genética , Piridinas/farmacologia , Pirróis/farmacologia , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Proteína Smad3/antagonistas & inibidores , Proteína Smad3/genética , Fator de Crescimento Transformador beta/farmacologia
12.
J Virol ; 83(24): 12934-46, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19812163

RESUMO

Viral hepatitis-induced oxidative stress accompanied by increased levels of transforming growth factor beta (TGF-beta) and hepatic fibrosis are hallmarks of hepatitis C virus (HCV) infection. The mechanisms of redox regulation in the pathogenesis of HCV-induced liver disease are not clearly understood. The results of our current studies suggest that reactive oxygen species (ROS) derived from Nox4, a member of the NADPH oxidase (Nox) family, could play a role in HCV-induced liver disease. We found that the expression of HCV (genotype 1a) cDNA constructs (full-length and subgenomic), core protein alone, viral RNA, or replicating HCV (JFH-AM2) induced Nox4 mRNA expression and ROS generation in human hepatocyte cell lines (Huh-7, Huh-7.5, HepG2, and CHL). Conversely, hepatocytes expressing Nox4 short hairpin RNA (shRNA) or an inactive dominant negative form of Nox4 showed decreased ROS production when cells were transfected with HCV. The promoters of both human and murine Nox4 were used to demonstrate transcriptional regulation of Nox4 mRNA by HCV, and a luciferase reporter tied to an approximately 2-kb promoter region of Nox4 identified HCV-responsive regulatory regions modulating the expression of Nox4. Furthermore, the human Nox4 promoter was responsive to TGF-beta1, and the HCV core-dependent induction of Nox4 was blocked by antibody against TGF-beta or the expression of dominant negative TGF-beta receptor type II. These findings identified HCV as a regulator of Nox4 gene expression and subsequent ROS production through an autocrine TGF-beta-dependent mechanism. Collectively, these data provide evidence that HCV-induced Nox4 contributes to ROS production and may be related to HCV-induced liver disease.


Assuntos
Hepacivirus/fisiologia , NADPH Oxidases/genética , Estresse Oxidativo , Fator de Crescimento Transformador beta/fisiologia , Proteínas Virais/fisiologia , Animais , Regulação Enzimológica da Expressão Gênica , Células Hep G2 , Humanos , Camundongos , NADPH Oxidase 4 , NADPH Oxidases/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
13.
Int J Mol Med ; 19(1): 29-39, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17143545

RESUMO

Raf-1 protein serine/threonine kinase plays an important role in ERK signal transduction pathway of cell survival and proliferation. Raf-induced transcriptional changes are dependent on phosphorylation/activation of ERK. However, regulation of phospho-ERK (p-ERK) via Raf transcriptome is as yet unknown. We report the initial characterization of BRCC3, a novel gene discovered previously by mRNA expression profiling in MDA-MB 231 human breast cancer cells treated with Raf antisense oligonucleotide. BRCC3 is localized at human chromosome 5q12.1. BRCC3 open reading frame consists of 529 amino acids, coding for an approximate 60-kDa predominantly membrane-associated protein. Expression levels of BRCC3 mRNA and protein are high during G2/M phase of the cell cycle in breast cancer cells. Treatment of MDA-MB 231 cells with Raf-1 siRNA resulted in decreased expression of Raf-1, BRCC3 and p-ERK, but not B-Raf. Transient or stable expression of the epitope-tagged BRCC3 cDNA was associated with increased p-ERK in three different cell lines. Consistently, BRCC3 siRNA treatment of MDA-MB 231 cells caused decreased expression of BRCC3 and p-ERK. Furthermore, exogenous BRCC3 expression was associated with a delay in etoposide-induced cell death and an increase in cell proliferation. These findings demonstrate that BRCC3 is a novel effector of Raf-1, and implicate a role of BRCC3 in modulation of p-ERK, cell survival and proliferation.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Chlorocebus aethiops , Mapeamento Cromossômico , Enzimas Desubiquitinantes , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas c-raf/metabolismo , RNA Interferente Pequeno , Transfecção
14.
Methods Mol Biol ; 361: 163-85, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17172711

RESUMO

Antisense oligonucleotides (ASO) against specific molecular targets (e.g., Bcl-2 and Raf-1) are important reagents in cancer biology and therapy. Phosphorothioate modification of the ASO backbone has resulted in an increased stability of ASO in vivo without compromising, in general, their target selectivity. Although the power of antisense technology remains unsurpassed, dose-limiting side effects of modified ASO and inadequate penetration into the tumor tissue have necessitated further improvements in ASO chemistry and delivery systems. Oligonucleotide delivery systems may increase stability of the unmodified or minimally modified ASO in plasma, enhance uptake of ASO by tumor tissue, and offer an improved therapy response. Here, we provide an overview of ASO design and in vivo delivery systems, and focus on preclinical validation of a liposomal nanoparticle containing minimally modified raf antisense oligodeoxynucleotide (LErafAON). Intact rafAON (15-mer) is present in plasma and in normal and tumor tissues of athymic mice systemically treated with LErafAON. Raf-1 expression is decreased in normal and tumor tissues of LErafAON-treated mice. Therapeutic benefit of a combination of LErafAON and radiation or an anticancer drug exceeds radiation or drug alone against human prostate, breast, and pancreatic tumors grown in athymic mice. Further improvements in ASO chemistry and nanoparticles are promising avenues in antisense therapy of cancer.


Assuntos
Antineoplásicos/farmacologia , Nanopartículas , Neoplasias/metabolismo , Oligodesoxirribonucleotídeos/farmacologia , Oligonucleotídeos Antissenso/farmacologia , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Terapia Combinada , Modelos Animais de Doenças , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Portadores de Fármacos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Nus , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/uso terapêutico , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-raf/biossíntese , Proteínas Proto-Oncogênicas c-raf/genética , Tionucleotídeos/química , Tionucleotídeos/genética , Tionucleotídeos/farmacologia , Tionucleotídeos/uso terapêutico
15.
Mol Ther ; 13(5): 947-55, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16455304

RESUMO

SCC-S2/GG2-1/NDED (approved gene symbol TNFAIP8) is a transcription factor NF-kappaB-inducible, antiapoptotic, and oncogenic molecule. In this study, we examined the role of SCC-S2 in invasion and experimental metastasis. We demonstrate that expression of SCC-S2 cDNA in MDA-MB 435 human breast cancer cells is associated with enhanced invasion in vitro and increased frequency of pulmonary colonization of tumor cells in athymic mice. Systemic treatment of athymic mice with a cationic liposomal formulation of SCC-S2 antisense oligo led to decreased incidence of pulmonary metastasis and inhibition of SCC-S2 expression in vivo. Antisense inhibition of endogenous SCC-S2 expression correlated with decreased expression of VEGF receptor-2 in tumor cells and human lung microvascular endothelial cells and loss of endothelial cell viability. In addition, downregulation of SCC-S2 expression in tumor cells was associated with decreased expression of known metastasis-related molecules MMP-1 and MMP-9. These results demonstrate a novel role for SCC-S2 in tumor progression, involving multiple effectors, and provide a basis for SCC-S2-targeted cancer gene therapy.


Assuntos
Neoplasias da Mama/patologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Metaloproteases/metabolismo , Proteínas/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Linhagem Celular Tumoral , Feminino , Humanos , Lipossomos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteases/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica/tratamento farmacológico , Transplante de Neoplasias , Oligonucleotídeos Antissenso/uso terapêutico , Proteínas/genética , Transplante Heterólogo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...