Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Total Environ ; 698: 134201, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31505362

RESUMO

A study was conducted to investigate the impact of raw wastewater use for irrigation on dissemination of bacterial resistance in urban agriculture in African cities. The pollution of agricultural fields by selected antibiotic residues was assessed. The structure and functions of the soil microbial communities, presence of antibiotic resistance genes of human clinical importance and Enterobacteriaceae plasmid replicons were analysed using high throughput metagenomic sequencing. In irrigated fields, the richness of Bacteroidetes and Firmicutes phyla increased by 65% and 15.7%, respectively; functions allocated to microbial communities' adaptation and development increased by 3%. Abundance of antibiotic resistance genes of medical interest was 27% greater in irrigated fields. Extended spectrum ß-lactamase genes identified in irrigated fields included blaCARB-3, blaOXA-347, blaOXA-5 and blaRm3. The presence of ARGs encoding resistance to amphenicols, ß-lactams, and tetracyclines were associated with the higher concentrations of ciprofloxacin, enrofloxacin and sulfamethoxazole in irrigated fields. Ten Enterobacteriaceae plasmid amplicon groups involved in the wide distribution of ARGs were identified in the fields. IncQ2, ColE, IncFIC, IncQ1, and IncFII were found in both farming systems; IncW and IncP1 in irrigated fields; and IncY, IncFIB and IncFIA in non-irrigated fields. In conclusion, raw wastewater irrigated soils in African cities could represent a vector for the spread of antibiotic resistance, thus threatening human and animal health. Consumers of products from these farms and farmers could be at risk of acquiring infections due to drug-resistant bacteria.


Assuntos
Irrigação Agrícola , Resistência Microbiana a Medicamentos/genética , Microbiologia do Solo , Águas Residuárias/microbiologia , África , Agricultura , Cidades , Monitoramento Ambiental , Poluentes do Solo/análise , beta-Lactamas
2.
Data Brief ; 27: 104638, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31700955

RESUMO

High-throughput sequencing data of soil microbial communities in non-irrigated and irrigated soils with raw sewage in African cities are presented in this report. These data were collected to study the potential of wastewater use in urban agriculture to disseminate bacterial resistance in soil. Soil samples were collected in three cities in two African countries. Each city had two sectors (irrigated and non-irrigated). After collection, biomass samples were purified, DNA from soil was extracted, quantified and sequenced using multiplex Illumina high-throughput sequencing. The sequence count of the six metagenome datasets ranges from 3,258,523,350 bp to 4,120,454,250 bp; the mean sequence length post quality control average was 149 ± 3 bp. The mechanisms of resistance encoded by the identified antibiotic resistance genes (ARGs) in the metagenomic data were dominated by antibiotic inactivation enzymes (64.7% and 71.9%), followed by antibiotic target replacement (14.7% and 12.5%), antibiotic target protection (11.8% and 9.4%) and efflux pumps (6.3% and 8.8%) in bacterial DNA isolated from irrigated and non-irrigated fields, respectively. The datasets will be useful for the scientific community working in the area of bacterial resistance dissemination from the environment. They can be used for further understanding of bacterial drug-resistance gene prevalence and acquisition in wastewater irrigated soils. The data reported herein was used for the article, titled "Raw wastewater irrigation for urban agriculture in three African cities increases the abundance of transferable antibiotic resistance genes in soil, including those encoding Extended spectrum ß-lactamase (ESBLs)" Bougnom et al. (2020) [1].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...