Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 32(10): 104002, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-31746780

RESUMO

In the present work, the structural and dynamic properties of aluminosilicates (Al2O3) x -(SiO2)1-x (AS) as a function of the Al2O3 concentration x are studied by means of molecular dynamics simulations. Firstly, the parametrization of the Born-Mayer-Huggins type potential developed recently for the more general CaO-Al2O3-SiO2 ternary system is assessed. Comparison of local structural properties, such as the x-ray structure factor, partial pair-correlation functions, distributions of coordination numbers and bond angles, as well as the dynamics through the viscosity and self-diffusion coefficients to experimental data and other molecular dynamics simulations found in the literature, shows that this potential is transferable to AS melts for all compositions and is more reliable than other empirical potentials used so far. The evolution of viscosity with temperature in stable liquid and undercooled regions is studied in the whole composition range and results show a progressive increase of the fragility with increasing Al2O3 content correlated to that of local structural entities like the triply bonded oxygen (TBO), AlO5 and AlO6.

2.
J Chem Theory Comput ; 14(5): 2322-2331, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29672042

RESUMO

A parametric study of ReaxFF for molecular dynamics simulation of graphitization of amorphous carbon was conducted. The responses to different initial amorphous carbon configurations, simulation time steps, simulated temperatures, and ReaxFF parameter sets were investigated. The results showed that a time step shorter than 0.2 fs is sufficient for the ReaxFF simulation of carbon using both Chenoweth 2008 and Srinivasan 2015 parameter sets. The amorphous carbon networks produced using both parameter sets at 300 K are similar to each other, with the first peak positions of pair distribution function curves located between the graphite sp2 bond peak position and the diamond sp3 bond peak position. In the graphitization process, the graphene fragment size increases and the orientation of graphene layers transforms to be parallel with each other with the increase of temperature and annealing time. This parallel graphene structure is close to the crystalline graphite. Associated with this graphitization is the presence of small voids and pores which arise because of the more efficient atomic packing relative to a disordered structure. For all initial densities, both potential parameter sets exhibit the expected behavior in which the sp2 fraction increases significantly over time. The sp2 fraction increases with increasing temperature. The differences of sp2 fraction at different temperatures are more obvious in lower density at 1.4 g/cm3. When density is increased, the gap caused by different temperatures becomes small. This study indicates that both Chenoweth 2008 and Srinivasan 2015 potential sets are appropriate for molecular dynamics simulations in which the growth of graphitic structures is investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...