Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Phys Eng Express ; 10(3)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38518360

RESUMO

The Accurate dosage prediction in Radiation Therapy is challenging, prompting a need for precision beyond conventional clinical Treatment Planning Systems (TPS). Monte Carlo-based methods are sought for their superior accuracy. The aim of this study is to compare dose distributions between the ACUROS algorithm and the GATE platform in various tissue densities and field sizes, focusing on smaller fields. This study was initiated with a homogeneous validation of the TrueBeam STX system, using measurements obtained from the Centre Hospitalier Interregional Edith Cavell (CHIREC) in Brussels. The validation compared dosimetric functions (Percentage Depth Dose (PDD), Dose profile (DP) and Collimator scatter fraction (CSF)) employing the GAMMA index with a 2% / 2 mm criterion tolerance. Following this, heterogeneous studies examined dose distributions between the ACUROS algorithm and the GATE platform in various tissue densities and field sizes, with a specific focus on smaller fields. Simulations were conducted using both platforms on chest phantoms with heterogeneous slabs representing bone, lung, and heart, each housing a central tumor. The impact of electronic equilibrium on tumors for different small field sizes was evaluated. Results showed a remarkable 99% agreement between measurements and GATE calculations in the homogeneous validation of the TrueBeam STX system. However, in heterogeneous studies, ACUROS consistently overestimated lung doses by up to 8% compared to GATE simulation, especially evident with a flattening filter and smaller beam sizes at density interfaces. This highlights significant dose estimation discrepancies between ACUROS and GATE, emphasizing the need for precise calculations. The findings support exploring Monte Carlo-based methods for enhanced accuracy in Radiation Therapy treatment planning.


Assuntos
Radiometria , Planejamento da Radioterapia Assistida por Computador , Planejamento da Radioterapia Assistida por Computador/métodos , Simulação por Computador , Algoritmos , Pulmão
2.
Phys Med ; 54: 189-199, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30017561

RESUMO

The new developments of the FLUKA Positron-Emission-Tomography (PET) tools are detailed. FLUKA is a fully integrated Monte Carlo (MC) particle transport code, used for an extended range of applications, including Medical Physics. Recently, it provided the medical community with dedicated simulation tools for clinical applications, including the PET simulation package. PET is a well-established imaging technique in nuclear medicine, and a promising method for clinical in vivo treatment verification in hadrontherapy. The application of clinically established PET scanners to new irradiation environments such as hadrontherapy requires further experimental and theoretical research to which MC simulations could be applied. The FLUKA PET tools, besides featuring PET scanner models in its library, allow the configuration of new PET prototypes via the FLUKA Graphical User Interface (GUI) Flair. Both the beam time structure and scan time can be specified by the user, reproducing PET acquisitions in time, in a particle therapy scenario. Furthermore, different scoring routines allow the analysis of single and coincident events, and identification of parent isotopes generating annihilation events. Two reconstruction codes are currently supported: the Filtered Back-Projection (FBP) and Maximum-Likelihood Expectation Maximization (MLEM), the latter embedded in the tools. Compatibility with other reconstruction frameworks is also possible. The FLUKA PET tools package has been successfully tested for different detectors and scenarios, including conventional functional PET applications and in beam PET, either using radioactive sources, or simulating hadron beam irradiations. The results obtained so far confirm the FLUKA PET tools suitability to perform PET simulations in R&D environment.


Assuntos
Método de Monte Carlo , Tomografia por Emissão de Pósitrons/métodos , Processamento de Imagem Assistida por Computador , Razão Sinal-Ruído
3.
Phys Rev Lett ; 92(7): 071102, 2004 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-14995836

RESUMO

We present the results of a search for point sources of high-energy neutrinos in the northern hemisphere using AMANDA-II data collected in the year 2000. Included are flux limits on several active-galactic-nuclei blazars, microquasars, magnetars, and other candidate neutrino sources. A search for excesses above a random background of cosmic-ray-induced atmospheric neutrinos and misreconstructed downgoing cosmic-ray muons reveals no statistically significant neutrino point sources. We show that AMANDA-II has achieved the sensitivity required to probe known TeV gamma-ray sources such as the blazar Markarian 501 in its 1997 flaring state at a level where neutrino and gamma-ray fluxes are equal.

4.
Phys Rev Lett ; 90(25 Pt 1): 251101, 2003 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-12857122

RESUMO

Data from the AMANDA-B10 detector taken during the austral winter of 1997 have been searched for a diffuse flux of high energy extraterrestrial muon neutrinos. This search yielded no excess events above those expected from background atmospheric neutrinos, leading to upper limits on the extraterrestrial neutrino flux measured at the earth. For an assumed E-2 spectrum, a 90% classical confidence level upper limit has been placed at a level E2Phi(E)=8.4 x 10(-7) cm(-2) s(-1) sr(-1) GeV (for a predominant neutrino energy range 6-1000 TeV), which is the most restrictive bound placed by any neutrino detector. Some specific predicted model spectra are excluded. Interpreting these limits in terms of the flux from a cosmological distributions of sources requires the incorporation of neutrino oscillations, typically weakening the limits by a factor of 2.

5.
Phys Rev Lett ; 90(9): 092002, 2003 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-12689215

RESUMO

Spin-dependent lepton-nucleon scattering data have been used to investigate the validity of the concept of quark-hadron duality for the spin asymmetry A1. Longitudinally polarized positrons were scattered off a longitudinally polarized hydrogen target for values of Q2 between 1.2 and 12 GeV2 and values of W2 between 1 and 4 GeV2. The average double-spin asymmetry in the nucleon resonance region is found to agree with that measured in deep-inelastic scattering at the same values of the Bjorken scaling variable x. This finding implies that the description of A1 in terms of quark degrees of freedom is valid also in the nucleon resonance region for values of Q2 above 1.6 GeV2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...