Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979641

RESUMO

This study involves the synthesis and comparison of zeolitic imidazolate frameworks (ZIFs), specifically ZIF-8 and ZIF-67 pristine with a commercial zeolite, emphasizing their CO2 affinity and sorption capability. To overcome challenges persisting in the handling and integration of these materials into industrial adsorption processes, particularly when limited to microcrystalline fine powders, we present herein an innovative manufacturing method to produce standalone monolithic supports. This process involves pseudoplastic paste formulations utilizing polyethylenimine (PEI) as a coagulant and locally fabricated phosphorylated cellulose nanofiber (PCNF) as a binding agent. Rheological investigation was conducted to anticipate the required shaping and design by means of paste flowability, consistency, and stiffness. XRD and FTIR results confirm the preservation of crystalline structure and the occurrence of amine functionalization associated with the presence of PEI, respectively. The proposed method significantly enhances the CO2 adsorption performance of the produced ZIF-8 monolith in comparison with that reached when using the pristine material, achieving a capacity of 1.25-2 mmol·g-1 at 30 °C under dry conditions in a pressure range of 1-13 bar, respectively. In other words, this work clearly highlights an effective applicability of the ZIF-8 monolith as an innovative sorbent for further designing CO2 capture industrial setups.

2.
ACS Appl Mater Interfaces ; 16(2): 2497-2508, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38178626

RESUMO

Designing easy and sustainable strategies for the synthesis of metal-organic frameworks (MOFs) from organic and inorganic wastes with the efficient removal of phosphate from water remains a challenge. The majority of the reported works have utilized costly precursors and nonsoluble ligands for the synthesis of MOFs. Herein, we have developed a low-cost, simple, and sustainable alternative approach using the coprecipitation method in water at room temperature for the synthesis of a new adsorbent-based trimetallic MOF. Poly(ethylene terephthalate) and stainless steel wastes were used as sources of water-soluble disodium terephthalate ligand and three metallic species (chromium, nickel, and iron salts) for the fabrication of trimetallic MOF (CrNiFe-MOF), respectively. The newly developed MOF demonstrates a superior space-time yield of 5760 g m-3 day-1, reaching a level allowing the industrialization production of this sustainable MOF. The scanning electron microscopy and adsorption studies revealed that the developed trimetallic MOF consists of aggregated nanoparticles and the presence of defective as well as mesoporous structures. This MOF showed an enhanced adsorption capacity of phosphate from real eutrophic water samples and higher stability in a range of pHs. The density functional theory calculations evidenced that the phosphate ions preferentially adsorb over H2O toward the metal oxo-trimers, with the adsorption energies increasing from H3PO4 to PO43- species in line with an improvement of the adsorption performance of CrNiFe-MOF when the pH increases, i.e., when HPO42- and PO43- become more predominant. These calculations also supported that the incorporation of Cr metal sites in the oxo-trimer is expected to boost the phosphate affinity of the MOF. Finally, our work provides an easy and eco-friendly approach for MOF designing to enhance phosphate removal from water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...