Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 8(3): 2495-503, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24547779

RESUMO

Experimental studies showed the impact of the electrolyte solvents on both the ion transport and the specific capacitance of microporous carbons. However, the related structure-property relationships remain largely unclear and the reported results are inconsistent. The details of the interactions of the charged carbon pore walls with electrolyte ions and solvent molecules at a subnanometer scale are still largely unknown. Here for the first time we utilize in situ small angle neutron scattering (SANS) to reveal the electroadsorption of organic electrolyte ions in carbon pores of different sizes. A 1 M solution of tetraethylammonium tetrafluoroborate (TEATFB) salt in deuterated acetonitrile (d-AN) was used in an activated carbon with the pore size distribution similar to that of the carbons used in commercial double layer capacitors. In spite of the incomplete wetting of the smallest carbon pores by the d-AN, we observed enhanced ion sorption in subnanometer pores under the applied potential. Such results suggest the visible impact of electrowetting phenomena counterbalancing the high energy of the carbon/electrolyte interface in small pores. This behavior may explain the characteristic butterfly wing shape of the cyclic voltammetry curve that demonstrates higher specific capacitance at higher applied potentials, when the smallest pores become more accessible to electrolyte. Our study outlines a general methodology for studying various organic salts-solvent-carbon combinations.

2.
Adv Mater ; 25(45): 6625-32, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-23970397

RESUMO

Pulsed electrodeposition of polyaniline (PANI) allows the fabrication of flexible, electrically conductive, nonwoven PANI-carbon nanotube (PANI-CNT) composite fabrics. They possess specific tensile strength and a modulus of toughness higher than that of aluminum matrix composites, titanium and aluminum alloys, steels, and many other structural materials. Electrochemical tests show that these nanocomposites additionally offer excellent cycle stability and ion electro-sorption and storage properties.

3.
ACS Nano ; 6(1): 118-25, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22166004

RESUMO

Metal nanowires show promise in a broad range of applications, but many synthesis techniques require complex methodologies. We have developed a method for depositing patterned aluminum nanowires (Al NWs) onto Cu, Ni, and stainless steel substrates using low-pressure decomposition of trimethylamine alane complex. The NWs exhibited an average diameter in the range from 45 to 85 nm, were crystalline, and did not contain a detectable amount of carbon impurities. Atomic layer deposition of 50 nm of vanadium oxide on the surface of Al NW allows fabrication of supercapacitor electrodes with volumetric capacitance in excess of 1400 F·cc(-3), which exceeds the capacitance of traditional activated carbon supercapacitor electrodes by more than an order of magnitude.


Assuntos
Alumínio/química , Fontes de Energia Elétrica , Eletrônica/instrumentação , Nanotubos/química , Nanotubos/ultraestrutura , Capacitância Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Gases/química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...