Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Gene Ther ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970423

RESUMO

Fabry disease (FD) is a multi-systemic lysosomal storage disorder caused by the loss of α-galactosidase A (α-Gal) function. The current standard of care, enzyme replacement therapies (ERTs), while effective in reducing kidney pathology when treated early, do not fully ameliorate cardiac issues, neuropathic manifestations, and risk of cerebrovascular events. AAV-based gene therapies (AAV-GT) can provide superior efficacy across multiple tissues owing to continuous, endogenous production of the therapeutic enzyme and lower treatment burden. We set out to develop a robust AAV-GT to achieve optimal efficacy with the lowest feasible dose to minimize any safety risks that are associated with high dose AAV-GTs. In this proof-of-concept study we evaluated the effectiveness of an rAAV9 vector expressing human GLA transgene under a strong ubiquitous promoter, combined with Woodchuck hepatitis virus Posttranscriptional Regulatory Element (WPRE) (rAAV9-hGLA). We tested our GT at three different doses, 5e10 vg/kg, 2.5e11 vg/kg, and 6.25e12 vg/kg in the G3Stg/GLAko Fabry mouse model that has tissue Gb3 substrate levels comparable to FD patients and develops several early FD pathologies. After intravenous injections of rAAV9-hGLA at 11 weeks of age, we observed dose-dependent increases in α-Gal activity in the key target tissues, reaching as high as 393-fold of WT in the kidneys and 6156-fold in the heart at the highest dose. Complete or near complete substrate clearance was observed in animals treated with the two higher dose levels tested in all tissues except for the brain. We also found dose-dependent improvements in several pathological biomarkers, as well as prevention of structural and functional organ pathology. Taken together, these results indicate that an AAV-GT under a strong ubiquitous promoter has the potential to address the unmet therapeutic needs in FD patients at relatively low doses.

2.
PLoS One ; 19(5): e0304415, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820517

RESUMO

Fabry disease (FD) is an X-linked disorder of glycosphingolipid metabolism caused by mutations in the GLA gene encoding alpha-galactosidase A (α-Gal). Loss of α-Gal activity leads to progressive lysosomal accumulation of α-Gal substrate, predominately globotriaosylceramide (Gb3) and its deacylated derivative globotriaosylsphingosine (lyso-Gb3). FD manifestations include early onset neuropathic pain, gastrointestinal symptoms, and later onset life-threatening renal, cardiovascular and cerebrovascular disorders. Current treatments can preserve kidney function but are not very effective in preventing progression of cardiovascular pathology which remains the most common cause of premature death in FD patients. There is a significant need for a translational model that could be used for testing cardiac efficacy of new drugs. Two mouse models of FD have been developed. The α-Gal A-knockout (GlaKO) model is characterized by progressive tissue accumulation of Gb3 and lyso-Gb3 but does not develop any Fabry pathology besides mild peripheral neuropathy. Reports of minor cardiac function abnormalities in GlaKO model are inconsistent between different studies. Recently, G3Stg/GlaKO was generated by crossbreeding GlaKO with transgenic mice expressing human Gb3 synthase. G3Stg/GlaKO demonstrate higher tissue substrate accumulation and develop cellular and tissue pathologies. Functional renal pathology analogous to that found in early stages of FD has also been described in this model. The objective of this study is to characterize cardiac phenotype in GlaKO and G3Stg/GlaKO mice using echocardiography. Longitudinal assessments of cardiac wall thickness, mass and function were performed in GlaKO and wild-type (WT) littermate controls from 5-13 months of age. G3Stg/GlaKO and WT mice were assessed between 27-28 weeks of age due to their shortened lifespan. Several cardiomyopathy characteristics of early Fabry pathology were found in GlaKO mice, including mild cardiomegaly [up-to-25% increase in left ventricular (LV mass)] with no significant LV wall thickening. The LV internal diameter was significantly wider (up-to-24% increase at 9-months), when compared to the age-matched WT. In addition, there were significant increases in the end-systolic, end-diastolic volumes and stroke volume, suggesting volume overload. Significant reduction in Global longitudinal strain (GLS) measuring local myofiber contractility of the LV was also detected at 13-months. Similar GLS reduction was also reported in FD patients. Parameters such as ejection fraction, fractional shortening and cardiac output were either only slightly affected or were not different from controls. On the other hand, some of the cardiac findings in G3Stg/GlaKO mice were inconsistent with Fabry cardiomyopathy seen in FD patients. This could be potentially an artifact of the Gb3 synthase overexpression under a strong ubiquitous promoter. In conclusion, GlaKO mouse model presents mild cardiomegaly, mild cardiac dysfunction, but significant cardiac volume overload and functional changes in GLS that can be used as translational biomarkers to determine cardiac efficacy of novel treatment modalities. The level of tissue Gb3 accumulation in G3Stg/GlaKO mouse more closely recapitulates the level of substrate accumulation in FD patients and may provide better translatability of the efficacy of new therapeutics in clearing pathological substrates from cardiac tissues. But interpretation of the effect of treatment on cardiac structure and function in this model should be approached with caution.


Assuntos
Modelos Animais de Doenças , Doença de Fabry , Camundongos Knockout , alfa-Galactosidase , Animais , Doença de Fabry/genética , Doença de Fabry/complicações , Doença de Fabry/metabolismo , Doença de Fabry/patologia , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo , Camundongos , Humanos , Triexosilceramidas/metabolismo , Masculino , Feminino
3.
Inflamm Res ; 64(7): 471-86, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25962837

RESUMO

BACKGROUND: Mouse models are useful for studying cigarette smoke (CS)-induced chronic pulmonary pathologies such as lung emphysema. To enhance translation of large-scale omics data from mechanistic studies into pathophysiological changes, we have developed computational tools based on reverse causal reasoning (RCR). OBJECTIVE: In the present study we applied a systems biology approach leveraging RCR to identify molecular mechanistic explanations of pathophysiological changes associated with CS-induced lung emphysema in susceptible mice. METHODS: The lung transcriptomes of five mouse models (C57BL/6, ApoE (-/-) , A/J, CD1, and Nrf2 (-/-) ) were analyzed following 5-7 months of CS exposure. RESULTS: We predicted 39 molecular changes mostly related to inflammatory processes including known key emphysema drivers such as NF-κB and TLR4 signaling, and increased levels of TNF-α, CSF2, and several interleukins. More importantly, RCR predicted potential molecular mechanisms that are less well-established, including increased transcriptional activity of PU.1, STAT1, C/EBP, FOXM1, YY1, and N-COR, and reduced protein abundance of ITGB6 and CFTR. We corroborated several predictions using targeted proteomic approaches, demonstrating increased abundance of CSF2, C/EBPα, C/EBPß, PU.1, BRCA1, and STAT1. CONCLUSION: These systems biology-derived candidate mechanisms common to susceptible mouse models may enhance understanding of CS-induced molecular processes underlying emphysema development in mice and their relevancy for human chronic obstructive pulmonary disease.


Assuntos
Nicotiana , Enfisema Pulmonar/genética , Enfisema Pulmonar/patologia , Fumaça , Animais , Apolipoproteínas E/genética , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Causalidade , Perfilação da Expressão Gênica , Exposição por Inalação , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CFTR , Camundongos Knockout , Reação em Cadeia da Polimerase , Proteômica , Enfisema Pulmonar/induzido quimicamente , Fumar , Especificidade da Espécie
4.
J Transl Med ; 12: 185, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24965703

RESUMO

BACKGROUND: Numerous inflammation-related pathways have been shown to play important roles in atherogenesis. Rapid and efficient assessment of the relative influence of each of those pathways is a challenge in the era of "omics" data generation. The aim of the present work was to develop a network model of inflammation-related molecular pathways underlying vascular disease to assess the degree of translatability of preclinical molecular data to the human clinical setting. METHODS: We constructed and evaluated the Vascular Inflammatory Processes Network (V-IPN), a model representing a collection of vascular processes modulated by inflammatory stimuli that lead to the development of atherosclerosis. RESULTS: Utilizing the V-IPN as a platform for biological discovery, we have identified key vascular processes and mechanisms captured by gene expression profiling data from four independent datasets from human endothelial cells (ECs) and human and murine intact vessels. Primary ECs in culture from multiple donors revealed a richer mapping of mechanisms identified by the V-IPN compared to an immortalized EC line. Furthermore, an evaluation of gene expression datasets from aortas of old ApoE-/- mice (78 weeks) and human coronary arteries with advanced atherosclerotic lesions identified significant commonalities in the two species, as well as several mechanisms specific to human arteries that are consistent with the development of unstable atherosclerotic plaques. CONCLUSIONS: We have generated a new biological network model of atherogenic processes that demonstrates the power of network analysis to advance integrative, systems biology-based knowledge of cross-species translatability, plaque development and potential mechanisms leading to plaque instability.


Assuntos
Aterosclerose/patologia , Vasos Sanguíneos/patologia , Inflamação/patologia , Modelos Cardiovasculares , Placa Aterosclerótica/patologia , Transdução de Sinais , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Aterosclerose/genética , Análise por Conglomerados , Bases de Dados como Assunto , Humanos , Camundongos , Razão de Chances , Placa Aterosclerótica/genética , Software , Transcriptoma/genética , Pesquisa Translacional Biomédica
5.
Invest Ophthalmol Vis Sci ; 48(12): 5445-53, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18055791

RESUMO

PURPOSE: Rhodopsin mutations account for approximately 25% of human autosomal dominant retinal degenerations. However, the molecular mechanisms by which rhodopsin mutations cause photoreceptor cell death are unclear. Mutations in genes involved in the termination of rhodopsin signaling activity have been shown to cause degeneration by persistent activation of the phototransduction cascade. This study examined whether three disease-associated rhodopsin substitutions Pro347Ser, Lys296Glu, and the triple mutant Val20Gly, Pro23His, Pro27Leu (VPP) caused degeneration by persistent transducin-mediated signaling activity. METHODS: Transgenic mice expressing each of the rhodopsin mutants were crossed onto a transducin alpha-subunit null (Tr(alpha)(-/-)) background, and the rates of photoreceptor degeneration were compared with those of transgenic mice on a wild-type background. RESULTS: Mice expressing VPP-substituted rhodopsin had the same severity of degeneration in the presence or absence of Tr(alpha). Unexpectedly, mice expressing Pro347Ser- or Lys296Glu-substituted rhodopsins exhibited faster degeneration on a Tr(alpha)(-/-) background. To test whether the absence of alpha-transducin contributed to degeneration by favoring the formation of stable rhodopsin/arrestin complexes, mutant Pro347Ser(+), Tr(alpha)(-/-) mice lacking arrestin (Arr(-/-)) were analyzed. Rhodopsin/arrestin complexes were found not to contribute to degeneration. CONCLUSIONS: The authors hypothesized that the decay of metarhodopsin to apo-opsin and free all-trans-retinaldehyde is faster with Pro347Ser-substituted rhodopsin than it is with wild-type rhodopsin. Consistent with this, the lipofuscin fluorophores A2PE, A2E, and A2PE-H(2), which form from retinaldehyde, were elevated in Pro347Ser transgenic mice.


Assuntos
Oligopeptídeos/genética , Mutação Puntual , Degeneração Retiniana/genética , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Rodopsina/genética , Transducina/genética , Animais , Arrestina/genética , Genótipo , Lipofuscina/metabolismo , Camundongos , Camundongos Transgênicos , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Visão Ocular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...