Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 11(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35407046

RESUMO

Processing edible insects into protein extracts may improve consumer acceptability. However, a better understanding of the effects of food processing on the proteins is needed to facilitate their incorporation into food matrices. In this study, soluble proteins from Tenebrio molitor (10% w/v) were pressurized using high hydrostatic pressure (HHP) at 70-600 MPa for 5 min and compared to a non-pressurized control (0.1 MPa). Protein structural modifications were evaluated using turbidity measurement, particle-size distribution, intrinsic fluorescence, surface hydrophobicity, gel electrophoresis coupled with mass spectrometry, and transmission electron microscopy (TEM). The observed decrease in fluorescence intensity, shift in the maximum emission wavelength, and increase in surface hydrophobicity reflected the unfolding of mealworm proteins. The formation of large protein aggregates consisting mainly of hexamerin 2 and ⍺-amylase were confirmed by protein profiles on gel electrophoresis, dynamic light scattering, and TEM analysis. The typical aggregate shape and network observed by TEM after pressurization indicated the potential involvement of myosin and actin in aggregate formation, and these were detected by mass spectrometry. For the first time, the identification of mealworm proteins involved in protein aggregation phenomena under HHP was documented. This work is the first step in understanding the mealworm protein-protein interactions necessary for the development of innovative insect-based ingredients in food formulations.

2.
Molecules ; 25(11)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32527059

RESUMO

Edible insects have garnered increased interest as alternative protein sources due to the world's growing population. However, the allergenicity of specific insect proteins is a major concern for both industry and consumers. This preliminary study investigated the capacity of high hydrostatic pressure (HHP) coupled to enzymatic hydrolysis by Alcalase® or pepsin in order to improve the in vitro digestion of mealworm proteins, specifically allergenic proteins. Pressurization was applied as pretreatment before in vitro digestion or, simultaneously, during hydrolysis. The degree of hydrolysis was compared between the different treatments and a mass spectrometry-based proteomic method was used to determine the efficiency of allergenic protein hydrolysis. Only the Alcalase® hydrolysis under pressure improved the degree of hydrolysis of mealworm proteins. Moreover, the in vitro digestion of the main allergenic proteins was increased by pressurization conditions that were specifically coupled to pepsin hydrolysis. Consequently, HHP-assisted enzymatic hydrolysis represents an alternative strategy to conventional hydrolysis for generating a large amount of peptide originating from allergenic mealworm proteins, and for lowering their immunoreactivity, for food, nutraceutical, and pharmaceutical applications.


Assuntos
Alérgenos/imunologia , Antioxidantes/metabolismo , Proteínas de Insetos/metabolismo , Pepsina A/metabolismo , Proteoma/análise , Subtilisinas/metabolismo , Tenebrio/metabolismo , Animais , Hidrólise , Pressão Hidrostática , Proteínas de Insetos/análise , Tenebrio/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...