Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 275(Pt 1): 133567, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950799

RESUMO

The purpose of this research was to evaluate the efficacy of sodium lignosulfonate (LS) as a dye adsorbent in the removal of methylene blue (MB) from water by polymer-enhanced ultrafiltration. Various parameters were evaluated, such as membrane molecular weight cut-off, pH, LS dose, MB concentration, applied pressure, and the effect of interfering ions. The results showed that the use of LS generated a significant increase in MB removal, reaching an elimination of up to 98.0 % with 50.0 mg LS and 100 mg L-1 MB. The maximum MB removal capacity was 21 g g-1 using the enrichment method. In addition, LS was reusable for up to four consecutive cycles of dye removal-elution. The removal test in a simulated liquid industrial waste from the textile industry was also effective, with a MB removal of 97.2 %. These findings indicate that LS is highly effective in removing high concentrations of MB dye, suggesting new prospects for its application in water treatment processes.

2.
Int J Biol Macromol ; 238: 124045, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-36934817

RESUMO

The contamination of water by dyes in high concentrations is a worldwide concern, and it has prompted the development of efficient, economical, and environmentally friendly materials and technologies for water purification. The hydration and adsorption capacity for methylene blue (MB) in biocomposites (BCs) based on cellulose nanofiber (CNF) (0 to 2 wt%) were studied. BCs were synthesized through a simple and straightforward route and characterized by spectroscopy, microscopic techniques and thermogravimetric analysis, among others. Hydration studies showed that BCs prepared with 2 wt% of CNF can absorb large volumes of water, approximately 2274 % in the case of poly 2-acrylamide-2-methyl-1-propanesulfonic acid (PAMPS)-CNF and 2408 % in poly sodium 4-styrene sulfonate (PSSNa)-CNF. These BCs showed outstanding adsorption capacity for highly concentrated MB solutions (4536 mg g-1 PAMPS-CNF and 11,930 mg g-1 PSSNa-CNF). It was confirmed that the adsorption mechanism is through electrostatic interactions. Finally, BCs showed high MB adsorption efficiency after several sorption-desorption cycles and on a simulated textile effluent. Furthermore, the theoretical results showed a preferential interaction between MB and the semiflexible polymer chains at the lowest energy setting. The development and study of a new adsorbent material with high MB removal performance that is easy to prepare, economical and reusable for potential use in water purification treatments was successfully achieved.


Assuntos
Nanofibras , Poluentes Químicos da Água , Celulose/química , Corantes , Azul de Metileno/química , Nanofibras/química , Moléculas com Motivos Associados a Patógenos , Poluentes Químicos da Água/química , Adsorção , Metilcelulose , Água/química , Cinética
3.
Nanomaterials (Basel) ; 11(11)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34835758

RESUMO

In this study, we report a low cost, fast and unexplored electrochemical synthesis strategy of copper oxide nanoneedles films as well as their morphological and chemical characterization. The nanostructured films were prepared using electrochemical anodization in alkaline electrolyte solutions of ethylene glycol, water and fluoride ions. The film morphology shows nanoneedle-shaped structures, with lengths up to 1-2 µm; meanwhile, high-resolution X-ray photoelectron spectroscopy (HRXPS) and spectroscopy Raman analyses indicate that a mixture of Cu(II) and Cu(I) oxides, or only Cu(I) oxide, is obtained as the percentage of water in the electrolyte solution decreases. A preliminary study was also carried out for the photocatalytic degradation of the methylene blue (MB) dye under irradiation with simulated sunlight in the presence of the nanoneedles obtained, presenting a maximum degradation value of 88% of MB and, thus, demonstrating the potential characteristics of the material investigated in the degradation of organic dyes.

4.
Polymers (Basel) ; 13(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34641265

RESUMO

The current problem of contamination caused by colored industrial effluents has led to the development of different techniques to remove these species from water. One of them, polymer-enhanced ultrafiltration (PEUF), has been systematically studied in this mini review, in which research works from 1971 to date were found and analyzed. Dye retention rates of up to 99% were obtained in several cases. In addition, a brief discussion of different parameters, such as pH, interfering salts, type of polymer, dye concentration, and membrane type, and their influence in dye removal is presented. It was concluded from the above that these factors can be adapted depending on the pollutant to be remediated, in order to optimize the process. Finally, theoretical approaches have been used to understand the intermolecular interactions, and development of the studied technique. In this revision, it is possible to observe that molecular docking, molecular dynamics simulations, density functional theory calculations, and hybrid neural-genetic algorithms based on an evolutionary approach are the most usual approximations used for this purpose. Herein, there is a detailed discussion about what was carried out in order to contribute to the research development of this important science field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...