Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(14): 16026-16034, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617614

RESUMO

In this study, an electric-field-assisted molecularly imprinted polymer (EFAMIP) as an enhanced form of MIP was developed to improve the MIP-modified quartz crystal microbalance (QCM) biosensors. While exerting a vertical electric field, polymerization of methacrylic acid in the presence of immunoglobulin G (IgG) as the template was initiated, and later, after the template removal process, the EFAMIPs were obtained. The polymer surface characterization was conducted by using a scanning electron microscope. The impact of electric field direction on IgG binding sites, forming either EFAMIP-Fab or EFAMIP-Fc, was assessed. Next, the static measurement results in liquid for EFAMIP-modified QCM and MIP-modified QCM were compared. While encompassing IgG, EFAMIP-modified QCMs exhibited up to a 113.5% higher frequency shift than typical MIP in time-limited detection. The final frequency shift of EFAMIP, which determines the detection limit of IgG, was improved up to 12.5% compared to typical MIP. Moreover, the EFAMIP-Fab performance was promising for the selective detection of IgG in a solution containing different types of immunoglobulins.

2.
Biomed Microdevices ; 26(2): 23, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652182

RESUMO

Millions of people are subject to infertility worldwide and one in every six people, regardless of gender, experiences infertility at some period in their life, according to the World Health Organization. Assisted reproductive technologies are defined as a set of procedures that can address the infertility issue among couples, culminating in the alleviation of the condition. However, the costly conventional procedures of assisted reproduction and the inherent vagaries of the processes involved represent a setback for its successful implementation. Microfluidics, an emerging tool for processing low-volume samples, have recently started to play a role in infertility diagnosis and treatment. Given its host of benefits, including manipulating cells at the microscale, repeatability, automation, and superior biocompatibility, microfluidics have been adopted for various procedures in assisted reproduction, ranging from sperm sorting and analysis to more advanced processes such as IVF-on-a-chip. In this review, we try to adopt a more holistic approach and cover different uses of microfluidics for a variety of applications, specifically aimed at sperm separation and analysis. We present various sperm separation microfluidic techniques, categorized as natural and non-natural methods. A few of the recent developments in on-chip fertilization are also discussed.


Assuntos
Separação Celular , Técnicas de Reprodução Assistida , Espermatozoides , Humanos , Masculino , Espermatozoides/citologia , Separação Celular/instrumentação , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Animais
3.
Lab Chip ; 24(6): 1636-1647, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38284817

RESUMO

Infertility, as a daunting ever-increasing challenge, poses a worldwide issue to both couples and the healthcare sector. According to the World Health Organization, half of infertility cases are attributed to male factor infertility, either partly or completely. Semen parameters of concern including sperm count, morphology, and motility are deemed to play a vital role in the insemination process. Density gradient centrifugation, being a clinically established procedure for improving on the mentioned parameters, has long been proven to inflict damage on the DNA content of the sperm cells, inducing DNA fragmentation. Herein, a bio-inspired microfluidic device is proposed that capitalizes on the geometry of the uterotubal junction (UTJ) of the female reproductive tract, which can act as a rheological barrier. The device leverages sperm rheotaxis and boundary-following behavior which have been considered as major migratory mechanisms used by sperm during the fertilization process in the female body. The device consists of a series of parallel channels that guide progressive motile sperms into the main sorting channel, where the hydrodynamic barriers created by two consecutive UTJ-like constrictions select sperms based on their propulsive velocity and linearity of motion. The sequential sorting employed here allows for the fractionation of the sperm population into two subpopulations with varying degrees of motility. Both sorted populations showed a significant increase in straight line velocity, reaching 63.4 ± 14.4 µm s-1 and 74 ± 13.8 µm s-1 in the first and second pools, respectively from 35.2 ± 27.2 µm s-1 in raw semen. Additionally, sorted populations demonstrated over 30% reduction in DNA fragmentation index, an indication that the proposed device selects for undamaged sperms with high quality. Apart from the biological superiority of the sorted sperms, this device presents itself as an easy and clinically-applicable method for the separation of progressive motile sperms, while at the same time, benefiting from a straightforward procedure for sperm retrieval.


Assuntos
Infertilidade Masculina , Sêmen , Masculino , Humanos , Feminino , Motilidade dos Espermatozoides , Separação Celular , Espermatozoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...