Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alcohol Clin Exp Res ; 45(7): 1370-1382, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34120365

RESUMO

BACKGROUND: For decades, Drosophila melanogaster has been used as a model organism to understand the genetics and neurobiology of ethanol intoxication and tolerance. Previous research has shown that acute and chronic pre-exposures to ethanol can trigger the development of functional ethanol tolerance in flies and has unveiled some of the genetic pathways involved in the process. To our knowledge, however, no previous work has systematically explored whether repeated intoxications of adult flies can affect the ethanol tolerance of their progeny. METHODS: Adult flies were intoxicated several times (once daily, over several days), and their F1 and F2 progeny were subjected to a functional tolerance test in which flies are exposed to ethanol and video recorded twice within 5 hr. Their behavior was subsequently analyzed to determine how long it took them to become sedated during the first and second exposures. One- and 2-way ANOVAs were used to determine whether parental treatment had an effect on their progeny's baseline resistance and/or acquired functional tolerance to ethanol. RESULTS: Parental flies that were intoxicated several times produced F1 and F2 progeny with a significantly higher resistance to ethanol than progeny from unexposed controls. Further, parental intoxications inconsistently increased the progeny's capacity to develop rapid functional tolerance upon re-exposure to ethanol. The transmission of increased ethanol resistance to progeny lasted several days after the last parental intoxication. CONCLUSION: To our knowledge, this is the first demonstration that repeated parental daily intoxications affect the progeny's response to ethanol in fruit flies. Our findings support the use of D. melanogaster to explore conserved pathways underlying the transmission of ethanol tolerance and can help in the identificaton of novel strategies for managing alcohol use disorder.


Assuntos
Comportamento Animal/efeitos dos fármacos , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Tolerância a Medicamentos/genética , Etanol/toxicidade , Animais , Etanol/administração & dosagem , Feminino , Masculino , Reprodução
2.
Crit Care Med ; 31(2): 353-8, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12576936

RESUMO

OBJECTIVE: The purpose of this study was to determine the role of nitric oxide and poly(ADP-ribose) synthase on impaired mitochondrial function in septic shock. DESIGN: Human umbilical vein endothelial cells were incubated with serum from ten healthy controls, 20 patients with septic shock, and seven critically ill patients who were not septic. The experiment was repeated after pretreatment with 3-aminobenzamide, a poly(ADP-ribose) synthase inhibitor, or N(G)-methyl-L-arginine, a nonspecific nitric oxide synthase inhibitor. MEASUREMENTS: Mitochondrial respiration was measured using a modified MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay. SETTING: Research laboratory. MAIN RESULT: Endothelial cell mitochondrial respiration was significantly depressed by septic serum and averaged 61% +/- 6% of control values (p <.05). Incubation with septic serum as compared with control serum also significantly decreased cellular adenosine triphosphate levels (6.7 +/- 1.2 nM vs. 13.5 +/- 1.9 nM, p<.01). The level of mitochondrial respiration in endothelial cells exposed to septic serum did not correlate with arterial lactate concentration but was correlated with both cardiac output (r(s) =.52, p<.05) and mixed venous oxygen saturation (r(s) =.61, p<.05). Pretreatment with N(G)-methyl-L-arginine significantly increased mitochondrial respiration in endothelial cells treated with septic serum from 63% +/- 6% of normal to 88% +/- 6% (p <.05) of normal values. Similarly, pretreatment with 3-aminobenzamide increased mitochondrial respiration in endothelial cells treated with septic serum from 64% +/- 6% to 100% +/- 4% (p <.01) of normal values. Endothelial cells incubated with serum from nonseptic critically ill patients did not demonstrate a significant decrease in mitochondrial respiration. CONCLUSION: In vitro mitochondrial respiration was significantly depressed by septic serum. The addition of N(G)-methyl-L-arginine, a nitric oxide synthase inhibitor, and 3-aminobenzamide, a blocker of the poly(ADP-ribose) synthase pathway, significantly attenuated this suppression. These data suggest that nitric oxide and poly(ADP-ribose) synthase activation may play an important role in the inhibition of mitochondrial respiration in septic shock.


Assuntos
Proteínas Sanguíneas/fisiologia , Mitocôndrias/fisiologia , Óxido Nítrico Sintase/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases , Choque Séptico/enzimologia , Idoso , Células Cultivadas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...