Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Tissue Res ; 380(3): 435-448, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31932950

RESUMO

The LIM homeodomain transcription factor Lmx1a shows a dynamic expression in the developing mouse ear that stabilizes in the non-sensory epithelium. Previous work showed that Lmx1a functional null mutants have an additional sensory hair cell patch in the posterior wall of a cochlear duct and have a mix of vestibular and cochlear hair cells in the basal cochlear sensory epithelium. In E13.5 mutants, Sox2-expressing posterior canal crista is continuous with an ectopic "crista sensory epithelium" located in the outer spiral sulcus of the basal cochlear duct. The medial margin of cochlear crista is in contact with the adjacent Sox2-expressing basal cochlear sensory epithelium. By E17.5, this contact has been interrupted by the formation of an intervening non-sensory epithelium, and Atoh1 is expressed in the hair cells of both the cochlear crista and the basal cochlear sensory epithelium. Where cochlear crista was formerly associated with the basal cochlear sensory epithelium, the basal cochlear sensory epithelium lacks an outer hair cell band, and gaps are present in its associated Bmp4 expression. Further apically, where cochlear crista was never present, the cochlear sensory epithelium forms a poorly ordered but complete organ of Corti. We propose that the core prosensory posterior crista is enlarged in the mutant when the absence of Lmx1a expression allows JAG1-NOTCH signaling to propagate into the adjacent epithelium and down the posterior wall of the cochlear duct. We suggest that the cochlear crista propagates in the mutant outer spiral sulcus because it expresses Lmo4 in the absence of Lmx1a.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Células Ciliadas Auditivas Externas/citologia , Proteínas com Homeodomínio LIM/genética , Camundongos , Camundongos Mutantes , Mutação , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética
2.
Exp Physiol ; 99(10): 1370-86, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24972834

RESUMO

Mutations in the structural protein dystrophin underlie muscular dystrophies characterized by progressive deterioration of muscle function. Dystrophin-deficient mdx mice are considered a model for Duchenne muscular dystrophy (DMD). Individuals with DMD are also susceptible to mood disorders, such as depression and anxiety. Therefore, the study objectives were to investigate the effects of the tricyclic antidepressant amitriptyline on mood, learning, central cytokine expression and skeletal muscle inflammation in mdx mice. Amitriptyline-induced effects (10 mg kg(-1) daily s.c. injections, 25 days) on the behaviour of mdx mice were investigated using the open field arena and tail suspension tests. The effects of chronic amitriptyline treatment on inflammatory markers were studied in the muscle and plasma of mdx mice, and mood-associated monoamine and cytokine concentrations were measured in the amygdala, hippocampus, prefrontal cortex, striatum, hypothalamus and midbrain. The mdx mice exhibited increased levels of anxiety and depressive-like behaviour compared with wild-type mice. Amitriptyline treatment had anxiolytic and antidepressant effects in mdx mice associated with elevations in serotonin levels in the amygdala and hippocampus. Inflammation in mdx skeletal muscle tissue was also reduced following amitriptyline treatment as indicated by decreased immune cell infiltration of muscle and lower levels of the pro-inflammatory cytokines tumour necrosis factor-α and interleukin-6 in the forelimb flexors. Interleukin-6 mRNA expression was remarkably reduced in the amygdala of mdx mice by chronic amitriptyline treatment. Positive effects of amitriptyline on mood, in addition to its anti-inflammatory effects in skeletal muscle, may make it an attractive therapeutic option for individuals with DMD.


Assuntos
Amitriptilina/uso terapêutico , Antidepressivos Tricíclicos/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Depressão/tratamento farmacológico , Inflamação/tratamento farmacológico , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Amitriptilina/farmacologia , Animais , Antidepressivos Tricíclicos/farmacologia , Depressão/psicologia , Modelos Animais de Doenças , Inflamação/patologia , Aprendizagem/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...